Fujitsu Develops Field Engineering Technology to Rapidly Provide IoT Services
May 25, 2016 | ACN NewswireEstimated reading time: 4 minutes

Fujitsu Laboratories Ltd. today announced the development of field engineering technology that shortens the time necessary to install on-site IoT devices that use wireless communication, such as Wi-Fi and Bluetooth, and provides stable operations.
In locations where IoT devices have been installed, instability in wireless communication can occur as people and things moving about can greatly change the radio wave environment, and as the radio waves emitted by smartphone and other commonly used devices may create interference. Responding to this instability creates issues in installation and operations as time and effort are required for experts to do necessary on-site adjustments through trial and error.
Fujitsu Laboratories has now developed technology that automatically determines where to install wireless devices, carrying out radio wave simulations that automatically take into account the coming and going of people and the layout of the space in which IoT devices will be installed. Fujitsu Laboratories also developed technology that automatically analyzes the use of radio waves at the location where IoT devices will be installed, and visualizes the congestion. With these technologies, wireless devices can be installed in about one-third the time, enabling swift implementation of IoT services.
Fujitsu Limited plans to offer this technology as a consulting service from the first half of fiscal 2016.
Development Background
Efforts are currently underway to create practical implementations of IoT systems in locations where people are active, such as factories, shopping centers, stadiums, stations and airports, and office buildings, and in order to install sensors flexibly and efficiently, systems using radio waves, such as Wi-Fi, Bluetooth, and ZigBee, are widely used.
Figure 1: Examples of IoT systems using radio waves
Issues
Environments considered for IoT system implementation often have many people and things coming and going, which can often cause instability in wireless communications during operations because they block or reflect radio waves. In addition, devices such as smartphones carried by people moving through the location emit radio waves that can cause mutual interference among those communications.
It could often take several weeks before the stable operation of IoT systems was achieved, as it was necessary for radio wave experts working on the installations to repeatedly reinstall and re-test the system, relying on their expertise in using specialized measuring devices. These issues in implementation and operation led to a demand for technology that makes it easy to install IoT devices.
About the Technology
Now Fujitsu Laboratories has developed radio wave simulation technology that automatically incorporates the site's three-dimensional image data and video of people's movement to automatically determine installation points for wireless devices, as well as technology that visualizes the actual radio wave interference situation.
Page 1 of 2
Suggested Items
ViTrox’s HITS 5.0 Empowers Global Partners with Innovative Solutions and Stronger Bonds
07/16/2025 | ViTroxViTrox, strives to be the World’s Most Trusted Technology Company, proudly announces the successful conclusion of its fifth edition of High Impact Training for Sales (HITS 5.0), held from 23rd to 27th June 2025 at ViTrox Campus 2.0 and 3.0, located in Batu Kawan Industrial Park, Penang, Malaysia.
Global Citizenship: The Global Push for Digital Inclusion
07/16/2025 | Tom Yang -- Column: Global CitizenshipIt can be too easy to take the technology at our fingertips for granted: high-speed internet, cloud-based collaboration, and instant video calls across continents. Yet, for billions of people, access to these digital tools is a distant dream. As a global community, we must ensure that technology is available to all. Here is how technology is bridging physical, economic, and educational gaps in underserved regions and profoundly reshaping lives.
Microchip Expands Space-Qualified FPGA Portfolio with New RT PolarFire® Device Qualifications and SoC Availability
07/10/2025 | MicrochipContinuing to support the evolving needs of space system developers, Microchip Technology has announced two new milestones for its Radiation-Tolerant (RT) PolarFire® technology: MIL-STD-883 Class B and QML Class Q qualification of the RT PolarFire RTPF500ZT FPGA and availability of engineering samples for the RT PolarFire System-on-Chip (SoC) FPGA.
Infineon Advances on 300-millimeter GaN Manufacturing Roadmap as Leading Integrated Device Manufacturer (IDM)
07/10/2025 | InfineonAs the demand for gallium nitride (GaN) semiconductors continues to grow, Infineon Technologies AG is poised to capitalize on this trend and solidify its position as a leading Integrated Device Manufacturer (IDM) in the GaN market.
Bell to Build X-Plane for Phase 2 of DARPA Speed and Runway Independent Technologies (SPRINT) X-Plane Program
07/09/2025 | Bell Textron Inc.Bell Textron Inc., a Textron Inc. company, has been down-selected for Phase 2 of Defense Advanced Research Projects Agency (DARPA) Speed and Runway Independent Technologies (SPRINT) X-Plane program with the objective to complete design, construction, ground testing and certification of an X-plane demonstrator.