Harnessing Solar and Wind Energy in One Device could Power the 'Internet of Things'
May 26, 2016 | ACSEstimated reading time: 1 minute

The “Internet of Things” could make cities “smarter” by connecting an extensive network of tiny communications devices to make life more efficient. But all these machines will require a lot of energy. Rather than adding to the global reliance on fossil fuels to power the network, researchers say they have a new solution. Their report on a single device that harvests wind and solar energy appears in the journal ACS Nano.
Computer industry experts predict that tens of billions of gadgets will make up the Internet of Things within just five years, according to news reports. They’ll be in homes, syncing coffee makers to alarm clocks. They’ll be in buildings, managing lights and air temperature. But they’ll also require energy to run. Sustainably generating more energy in cities close to where the devices will be used is challenging. Cities don’t have much space for towering wind turbines, for example. Ya Yang, Zhong Lin Wang and colleagues wanted to find a better way to power smart cities.
For the first time, the researchers have integrated two energy harvesting technologies in one: a silicon solar cell and a nanogenerator that can convert wind energy into electrical output. The solar cell component of the system delivers 8 milliWatts of power output (1 milliWatt can light up 100 small LEDs). The wind harvesting component delivers up to 26 milliWatts. Together, under simulated sun and wind conditions, four devices on the roof of a model home could turn on the LEDs inside and power a temperature-humidity sensor. Installed in large numbers on real rooftops, the hybrid device could help enable smart cities.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
NVIDIA Seeks to Raise HBM4 Specs in Response to AMD Competition; SK hynix Expected to Remain Largest Supplier in 2026
09/18/2025 | TrendForceTrendForce reports that NVIDIA has recently pressed key component suppliers of its Vera Rubin server racks to upgrade product specifications, specifically requesting that HBM4 speed per pin be raised to 10 Gbps, as AMD gets set to launch its MI450 Helios platform in 2026.
Cybord Announces Air-Gapped Visual AI Platform for Electronics Integrity and Hardware Cybersecurity
09/17/2025 | PRNewswireCybord, a leading provider of advanced visual-AI electronic component analytics solutions, announced the launch of its fully air-gapped platform, bringing advanced Visual AI inspection and traceability capabilities fully on-premises.
Knocking Down the Bone Pile: Best Practices for Electronic Component Salvaging
09/17/2025 | Nash Bell -- Column: Knocking Down the Bone PileElectronic component salvaging is the practice of recovering high-value devices from PCBs taken from obsolete or superseded electronic products. These components can be reused in new assemblies, reducing dependence on newly purchased parts that may be costly or subject to long lead times.
ICAPE Group Unveils Exclusive Report on Sustainability in Electronics Manufacturing
09/15/2025 | ICAPE GroupICAPE Group, a global leader in printed circuit boards (PCBs) and custom electronics manufacturing, today announces the launch of its 2025 Industry Outlook & Innovation Report: Sustainability in Electronics Manufacturing. This exclusive report is accompanied by fresh insights from a dedicated Statista survey of 100 electronics manufacturing professionals, commissioned by ICAPE Group.
Advanced Packaging-to-Board-Level Integration: Needs and Challenges
09/15/2025 | Devan Iyer and Matt Kelly, Global Electronics AssociationHPC data center markets now demand components with the highest processing and communication rates (low latencies and high bandwidth, often both simultaneously) and highest capacities with extreme requirements for advanced packaging solutions at both the component level and system level. Insatiable demands have been projected for heterogeneous compute, memory, storage, and data communications. Interconnect has become one of the most important pillars of compute for these systems.