Using Solid-state Materials with Gold Nanoantennas for More Durable Solar Cells
May 27, 2016 | Hokkaido UniversityEstimated reading time: 1 minute

Scientists at Hokkaido University in Japan are making headway in the fabrication of all-solid-state solar cells that are highly durable and can efficiently convert sunlight into energy. The team employed a method called “atomic layer deposition”, which allows scientists to control the deposit of very thin, uniform layers of materials on top of each other. Using this method, they deposited a thin film of nickel oxide onto a single crystal of titanium dioxide. Gold nanoparticles were introduced between the two layers to act like an antenna that harvests visible light.
The team tested the properties of these fabricated devices with and without an intermediary step following the deposition of nickel oxide that involves heating it to very high temperatures and then allowing it to slowly cool – a process called “annealing”.
Photocurrent generation was successfully observed on the all-solid-state photoelectric conversion device. The device was found to be highly durable and stable because, unlike some solar cells, it does not contain organic components, which have a tendency to degrade over time and under harsh conditions.
The researchers also found that annealing affected the properties of the device by changing the interfacial structure of the layers. For example, it increased the voltage available from the device but also increased the resistance within it. It also decreased the device’s efficiency in converting light to electricity. The results suggest that the structural changes caused by annealing prevent the layer of gold nanoparticles from injecting electrons into the titanium dioxide layer.
The team’s fabrication process is inexpensive and can be scaled up easily but the resultant device’s properties are still insufficient for practical use and its efficiency in converting light to energy needs to be improved. Further research is needed to understand the roles of each layer in conducting energy to improve the device’s efficiency.
Suggested Items
It’s Only Common Sense: Customer Service Is Sales in Disguise
07/14/2025 | Dan Beaulieu -- Column: It's Only Common SenseCustomer service is one of the most powerful sales tools a business can deploy. Every interaction—whether they're calling to ask a question, complain, or inquire about your hours—is an opportunity to build your brand, create loyalty, and drive sales.
Ventec International Group Enters into a Fulfillment and Supply Agreement with Matrix and Launches Ventec Americas
06/09/2025 | Ventec International GroupVentec is excited to announce a new partnership with Matrix aimed at enhancing the fulfillment, value-added conversion, and distribution of PCB base materials across the North American market. This collaboration is set to significantly improve supply chain efficiency, and delivery performance for the company's North American customers.
WellPCB, OurPCB Launch Low-Cost PCB Assembly and Custom Cable Assembly Solutions
05/29/2025 | ACCESSWIREWellPCB and OurPCB, world leading PCB manufacturing service providers, announced today that they have officially launched new Low-Cost PCB Assembly Solutions and Custom Cable Assembly services to meet the needs of the electronics manufacturing industry for high cost performance and flexible customization.
IPC Applauds Leadership of Reps. Moore and Krishnamoorthi on PCB Manufacturing Bill
05/28/2025 | IPCIPC, the global electronics association serving more than 1,400 U.S. companies and over 3,200 worldwide, strongly supports the bipartisan reintroduction on May 28 of the Protecting Circuit Boards and Substrates (PCBS) Act in the 119th Congress.
FastlinkPCB Accelerates Global Expansion, Builds Efficient PCB Industry Chain
05/26/2025 | FastlinkPCBFastlinkPCB, a PCB manufacturing and assembly solutions provider, announced that it has completed the layout of subsidiaries in the US, Germany, Switzerland, and Malaysia over the past year, forming a localized service network covering North America, Europe, and Southeast Asia.