New Path Forward for Next-Generation Lithium-Ion Batteries
May 31, 2016 | Lawrence Berkeley National LaboratoryEstimated reading time: 4 minutes
Currently there are only three transition metals—cobalt, nickel, and manganese—used in most commercial cathodes. That limited choice constrains battery design. What’s more, their availability is limited. Demand for cobalt has been booming, and more than 45 percent of the world’s cobalt production now goes to lithium-ion batteries, Ceder noted.
“It’s not scalable,” he said. “If we’re ever to all drive electric vehicles, there’s no way a cobalt-only technology can make it.”
The research started two years ago after Ceder’s group discovered that a so-called “disordered” cathode structure, previously dismissed by battery designers, could indeed be workable. This prompted the group to look into how and when oxygen is active in lithium-excess cathodes, which are similar in structure to disordered cathodes.
Ceder’s group developed a novel methodology of utilizing quantum mechanical simulations to study electron charge transfer in cathode materials with high accuracy. They used supercomputer facilities at the National Energy Research Scientific Computing Center (NERSC), a DOE Office of Science User Facility hosted at Berkeley Lab, and the Extreme Science and Engineering Discovery Environment (XSEDE), led by the University of Illinois.
The findings will allow scientists to approach battery design more rationally. “Now we understand how the oxygen is oxidized and how it competes with transition metals in oxidation,” Seo said. “We now know how to manipulate transition metal and oxygen oxidation to achieve higher energy density cathodes.”
It will also give them more options. “We can now use 15 or 20 different transition metals,” Ceder said. “We can use a much broader range of chemistry to look for cathodes, and we know exactly the kind of structures we want to engineer.”
The research was supported by DOE’s Office of Vehicle Technologies, the Robert Bosch Corporation, and Umicore Specialty Oxides and Chemicals.
Page 2 of 2Suggested Items
Intervala Hosts Employee Car and Motorcycle Show, Benefit Nonprofits
08/27/2024 | IntervalaIntervala hosted an employee car and motorcycle show, aptly named the Vala-Cruise and it was a roaring success! Employees had the chance to show off their prized wheels, and it was incredible to see the variety and passion on display.
KIC Honored with IPC Recognition for 25 Years of Membership and Contributions to Electronics Manufacturing Industry
06/24/2024 | KICKIC, a renowned pioneer in thermal process and temperature measurement solutions for electronics manufacturing, is proud to announce that it has been recognized by IPC for 25 years of membership and significant contributions to electronics manufacturing.
Boeing Starliner Spacecraft Completes Successful Crewed Docking with International Space Station
06/07/2024 | BoeingNASA astronauts Barry "Butch" Wilmore and Sunita "Suni" Williams successfully docked Boeing's Starliner spacecraft to the International Space Station (ISS), about 26 hours after launching from Cape Canaveral Space Force Station.
KIC’s Miles Moreau to Present Profiling Basics and Best Practices at SMTA Wisconsin Chapter PCBA Profile Workshop
01/25/2024 | KICKIC, a renowned pioneer in thermal process and temperature measurement solutions for electronics manufacturing, announces that Miles Moreau, General Manager, will be a featured speaker at the SMTA Wisconsin Chapter In-Person PCBA Profile Workshop.
The Drive Toward UHDI and Substrates
09/20/2023 | I-Connect007 Editorial TeamPanasonic’s Darren Hitchcock spoke with the I-Connect007 Editorial Team on the complexities of moving toward ultra HDI manufacturing. As we learn in this conversation, the number of shifting constraints relative to traditional PCB fabrication is quite large and can sometimes conflict with each other.