A Switch for Light Wave Electronics
June 2, 2016 | Technical University of MunichEstimated reading time: 2 minutes

Light waves might be able to drive future transistors. The electromagnetic waves of light oscillate approximately one million times in a billionth of a second, hence at petahertz frequencies. In principle future electronics could reach this speed and become 100.000 times faster than current digital electronics.
A team of the Laboratory for Attosecond Physics (LAP) at the Max-Planck Institute of Quantum Optics (MPQ), the Ludwig-Maximilians University Munich (LMU) and the Technical University of Munich (TUM) in collaboration with theorists from the University of Tsukuba have optimized the interaction of light and glass in a way that facilitates its possible future usage for light wave driven electronics (Nature, "Attosecond nonlinear polarization and light-matter energy transfer in solids").
Electron movements form the basis of electronics as they enable storage, processing and transfer of information. State-of-the-art electronic circuits have reached maximum clock rates of several billion switching cycles per second, limited by the heat accumulated in the process of switching power on and off.
The electric field of light changes its direction a trillion times per second and is able to move electrons in solids at this speed. Thus light waves could form the basis for future electronic switching once the induced electron motion and its influence on heat accumulation is precisely understood.
Physicists from the Laboratory for Attosecond Physics have already found out that it is possible to manipulate the electronic properties of matter at optical frequencies. In a follow-up experiment the researchers, in a manner similar to their previous approach, shot extremely strong, femtosecond-laser pulses (one femtosecond is a millionth of a billionth of a second) onto silicon dioxide glass.
A single oscillation
The light pulse comprises only a single strong oscillation cycle of the field, hence the electrons are moved left and right only once. The full temporal characterization of the light field after transmission through the thin glass plate now, for the first time, provides direct insight into the attosecond electron dynamics, induced by the light pulse in the solid.
This measurement technique reveals that electrons react with a delay of only some ten attoseconds (one attosecond is a billionth of a billionth of a second) to the incoming light. This time delay in the reaction determines the energy transferred between light and matter.
Since it is now possible to measure this energy exchange within one light cycle, the parameters of the light-matter interaction can be understood and optimized to reach out for the ultimate speed in signal processing. The more reversible the exchange and the smaller the residual energy left in the medium after the light pulse has passed, the more suitable the interaction for future light field-driven electronics.
Cool relationship
To understand the observed phenomena and identify the best set of experimental parameters to that end, the experiments were backed up by a novel simulation method based on first principles developed at the Center for Computational Sciences at University of Tsukuba. The theorists there used the K computer, currently the fourth fastest supercomputer in the world, to compute electron movement inside solids with unprecedented accuracy.
Finally, the researchers succeeded in optimizing the energy consumption by adapting the amplitude of the light field. At certain field strengths energy is transferred from the field to the solid during the first half of the pulse cycle and is almost completely emitted back in the second half of the light.
These findings verify that a potential switching medium for future light-driven electronics need not overheat. Thus the ‘cool relationship’ between glass and light might provide an opportunity for dramatically accelerating electronic signal and data processing, up to the ultimate limit.
Suggested Items
Libra Industries Launches In-House High Precision Underfill Capabilities
07/17/2025 | Libra IndustriesLibra Industries, a leading provider of systems integration and electronics manufacturing services (EMS), is excited to announce the addition of high-precision underfill to its in‑house manufacturing capabilities.
The Government Circuit: Three Inescapable Conclusions About Global Trade Policies
07/17/2025 | Chris Mitchell -- Column: The Government CircuitAmid a series of recent moves by U.S. President Donald Trump to escalate trade policy pressure on key U.S. partners, including Europe, Canada, Mexico, Japan, and Malaysia, the Global Electronics Association’s recent report on global trade flows in the electronics industry is overflowing with relevant insights.
The Wire Association International’s Wire Expo to Co-Locate with the Electrical Wire Processing Technology Expo (EWPTE)
07/16/2025 | Global Electronics AssociationThe Wire Association International Inc. (WAI) announces plans to co-locate its biennial Wire Expo with the Wiring Harness Manufacturer’s Association (WHMA)/Global Electronics Association’s Electrical Wire Processing Technology Expo (EWPTE) May 6-7, 2026. The two shows will co-locate at the Baird Center, Milwaukee, Wisconsin, USA.
HyRel Technologies, NJ MET Announce Strategic Collaboration for Integrated Component Services
07/16/2025 | HyRelThe collaboration brings together two trusted names in the electronics industry, uniting over 75 years of combined expertise to offer a more complete solution for customers seeking fast, reliable, and cost-effective services.
Amtech Launches BOMsense Free Online Tool to Help Manufacturers Reduce Tariff Risk and BOM Surprises
07/16/2025 | AmtechAmtech Electrocircuits, a leading provider of manufacturing solutions, is proud to announce the release of BOMsense™, a free, Web-based tool that gives engineers, buyers, and program managers immediate insight into their electronics Bill of Materials (BOMs) to proactively manage tariff exposure, HTS classification, and cost risks.