NUS Engineering Team Designs Novel Multi-field Invisible Sensor
June 3, 2016 | NUSEstimated reading time: 2 minutes
A team of researchers from the National University of Singapore (NUS) has invented a novel camouflage technique that effectively hides thermal and electronic sensors without compromising performance. Led by Assistant Professor Qiu Cheng-Wei from the Department of Electrical & Computer Engineering at NUS Faculty of Engineering, the team created the world’s first multifunctional camouflage shell that renders sensors invisible in both thermal and electric environments.
Current technologies which make sensors ‘invisible’ usually also make them ineffective, while others only work in specific physical fields (i.e. either thermal or electrical). Over the past ten months, the NUS team has experimentally demonstrated that they could hide sensors in both thermal and electric fields without them being detected. The invisible sensors are also able to continue to probe on the environment while ‘under cover’.
Asst Prof Qiu explained, “We have designed a camouflage ‘shell’ that not only mimics surrounding thermal fields but also electric fields, both at the same time. The object under camouflage becomes truly invisible as its shape and position cannot be detected in terms of both thermal and electric images.”
In their experiment, they created an ideal invisible sensor by covering it with a thin shell which is made of pure copper. The shell is designed to drastically reduce the perturbation of heat flux and electric current simultaneously. The thickness of the shell is fabricated based on detailed calculations to allow precise manipulation of external multi-physical fields to insulate the sensor and hence render it invisible and yet allows it to receive incoming signals from outside.
“Our camouflaging shell will open up a new avenue for advanced sensing and security systems. Sensors which are used to monitor current and heat flow in strong voltage or high temperature environments are easily damaged. Our camouflaging shell hence protect such sensors from the harsh environment and at the same time enhance the accuracy of the hidden sensor, as the shell will eliminate any distortion around the sensor. This attribute is significant in our study of other applications such as using the camouflaging shell on special mission fieldtrips. The team is also working on developing multifunctional invisible sensors that have instantaneous stealth ability,” added Dr Qiu.
Drawing a comparison with the chameleon, from which the team had drawn inspiration to develop the novel camouflaging shell, Dr Qiu said, “The skin of a chameleon is made up of several layers of specialised cells containing various pigment while the outermost layer is transparent. The cells beneath the skin change colour based on light intensity and temperature as well as the chameleon’s mood. Our team’s invention can be seen as an improved “skin” for the chameleon such that it will become invisible when it appears in front of thermal and electric signal detectors!”
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Electrodeposited Copper Foils Market to Grow by $11.7 Billion Over 2025-2032
09/18/2025 | Globe NewswireThe global electrodeposited copper foils market is poised for dynamic growth, driven by the rising adoption in advanced electronics and renewable energy storage solutions.
MacDermid Alpha Showcases Advanced Interconnect Solutions at PCIM Asia 2025
09/18/2025 | MacDermid Alpha Electronics SolutionsMacDermid Alpha Electronic Solutions, a global leader in materials for power electronics and semiconductor assembly, will showcase its latest interconnect innovations in electronic interconnect materials at PCIM Asia 2025, held from September 24 to 26 at the Shanghai New International Expo Centre, Booth N5-E30
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.