NUS Engineering Team Designs Novel Multi-field Invisible Sensor
June 3, 2016 | NUSEstimated reading time: 2 minutes
A team of researchers from the National University of Singapore (NUS) has invented a novel camouflage technique that effectively hides thermal and electronic sensors without compromising performance. Led by Assistant Professor Qiu Cheng-Wei from the Department of Electrical & Computer Engineering at NUS Faculty of Engineering, the team created the world’s first multifunctional camouflage shell that renders sensors invisible in both thermal and electric environments.
Current technologies which make sensors ‘invisible’ usually also make them ineffective, while others only work in specific physical fields (i.e. either thermal or electrical). Over the past ten months, the NUS team has experimentally demonstrated that they could hide sensors in both thermal and electric fields without them being detected. The invisible sensors are also able to continue to probe on the environment while ‘under cover’.
Asst Prof Qiu explained, “We have designed a camouflage ‘shell’ that not only mimics surrounding thermal fields but also electric fields, both at the same time. The object under camouflage becomes truly invisible as its shape and position cannot be detected in terms of both thermal and electric images.”
In their experiment, they created an ideal invisible sensor by covering it with a thin shell which is made of pure copper. The shell is designed to drastically reduce the perturbation of heat flux and electric current simultaneously. The thickness of the shell is fabricated based on detailed calculations to allow precise manipulation of external multi-physical fields to insulate the sensor and hence render it invisible and yet allows it to receive incoming signals from outside.
“Our camouflaging shell will open up a new avenue for advanced sensing and security systems. Sensors which are used to monitor current and heat flow in strong voltage or high temperature environments are easily damaged. Our camouflaging shell hence protect such sensors from the harsh environment and at the same time enhance the accuracy of the hidden sensor, as the shell will eliminate any distortion around the sensor. This attribute is significant in our study of other applications such as using the camouflaging shell on special mission fieldtrips. The team is also working on developing multifunctional invisible sensors that have instantaneous stealth ability,” added Dr Qiu.
Drawing a comparison with the chameleon, from which the team had drawn inspiration to develop the novel camouflaging shell, Dr Qiu said, “The skin of a chameleon is made up of several layers of specialised cells containing various pigment while the outermost layer is transparent. The cells beneath the skin change colour based on light intensity and temperature as well as the chameleon’s mood. Our team’s invention can be seen as an improved “skin” for the chameleon such that it will become invisible when it appears in front of thermal and electric signal detectors!”
Suggested Items
RF PCB Design Tips and Tricks
05/08/2025 | Cherie Litson, EPTAC MIT CID/CID+There are many great books, videos, and information online about designing PCBs for RF circuits. A few of my favorite RF sources are Hans Rosenberg, Stephen Chavez, and Rick Hartley, but there are many more. These PCB design engineers have a very good perspective on what it takes to take an RF design from schematic concept to PCB layout.
Trouble in Your Tank: Causes of Plating Voids, Pre-electroless Copper
05/09/2025 | Michael Carano -- Column: Trouble in Your TankIn the business of printed circuit fabrication, yield-reducing and costly defects can easily catch even the most seasoned engineers and production personnel off guard. In this month’s column, I’ll investigate copper plating voids with their genesis in the pre-plating process steps.
Elephantech: For a Greener Tomorrow
04/16/2025 | Marcy LaRont, PCB007 MagazineNobuhiko Okamoto is the global sales and marketing manager for Elephantech Inc., a Japanese startup with a vision to make electronics more sustainable. The company is developing a metal inkjet technology that can print directly on the substrate and then give it a copper thickness by plating. In this interview, he discusses this novel technology's environmental advantages, as well as its potential benefits for the PCB manufacturing and semiconductor packaging segments.
Trouble in Your Tank: Organic Addition Agents in Electrolytic Copper Plating
04/15/2025 | Michael Carano -- Column: Trouble in Your TankThere are numerous factors at play in the science of electroplating or, as most often called, electrolytic plating. One critical element is the use of organic addition agents and their role in copper plating. The function and use of these chemical compounds will be explored in more detail.
IDTechEx Highlights Recyclable Materials for PCBs
04/10/2025 | IDTechExConventional printed circuit board (PCB) manufacturing is wasteful, harmful to the environment and energy intensive. This can be mitigated by the implementation of new recyclable materials and technologies, which have the potential to revolutionize electronics manufacturing.