Scientists Use Silver to Make Lights Shine Brightly
June 7, 2016 | Queen Mary University of LondonEstimated reading time: 1 minute

Writing in the journal Nature Materials, the international group of scientists modified a mineral called zeolite, more commonly found in washing powder, to incorporate tiny clusters of silver atoms.
At this very small scale (less than 10 atoms), the silver clusters act very differently and can even emit light.
Lead author Dr Oliver Fenwick from QMUL’s School of Engineering and Materials Science, said: “We’ve shown that silver atoms can be assembled in the porous framework of minerals known as zeolites with a level of control not reported previously. This has allowed us to tailor very precisely the properties of the silver clusters to meet our needs – in this case an efficient phosphor.
“The high efficiency of the materials along with cheap, scalable synthesis makes them very attractive as next generation emitters for fluorescent lamps, LEDs and for biological imaging, for example for highlighting tumours or cell division.”
Zeolites are porous minerals that can be found naturally or produced synthetically on an industrial scale. They are rigid and have a well-defined framework made of molecular-scale channels and cavities.
The researchers from Université de Strasbourg in France, where Dr Fenwick was based when carrying out the study, and KU Leuven in Belgium manipulated the characteristics of the zeolite pores to fine-tune the properties of the clusters of silver. By tailoring of the zeolite host, they demonstrated luminescence efficiencies close to 100 per cent.
This research is funded by the European FP7 project “Self-assembly in confined space” (SACS) and involves Université de Strasbourg in France and KU Leuven in Belgium.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Curing and Verification in PCB Shadow Areas
09/17/2025 | Doug Katze, DymaxDesign engineers know a simple truth that often complicates electronics manufacturing: Light doesn’t go around corners. In densely populated PCBs, adhesives and coatings often fail to fully cure in shadowed regions created by tall ICs, connectors, relays, and tight housings.
Marcy’s Musings: Advancing the Advanced Materials Discussion
09/17/2025 | Marcy LaRont -- Column: Marcy's MusingsAs the industry’s most trusted global source of original content about the electronics supply chain, we continually ask you about your concerns, what you care about, and what you most want to learn about. Your responses are insightful and valuable. Thank you for caring enough to provide useful feedback and engage in dialogue.
September 2025 PCB007 Magazine: The Future of Advanced Materials
09/16/2025 | I-Connect007 Editorial TeamMoore’s Law is no more, and the advanced material solutions being developed to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
I-Connect007 Launches Advanced Electronics Packaging Digest
09/15/2025 | I-Connect007I-Connect007 is pleased to announce the launch of Advanced Electronics Packaging Digest (AEPD), a new monthly digital newsletter dedicated to one of the most critical and rapidly evolving areas of electronics manufacturing: advanced packaging at the interconnect level.
Panasonic Industry will Double the Production Capacity of MEGTRON Multi-layer Circuit Board Materials Over the Next Five Years
09/15/2025 | Panasonic Industry Co., Ltd.Panasonic Industry Co., Ltd., a Panasonic Group company, announced plans for a major expansion of its global production capacity for MEGTRON multi-layer circuit board materials today. The company plans to double its production over the next five years to meet growing demand in the AI server and ICT infrastructure markets.