Light Packing More Data has Potential to Increase Bandwidth by 100 Times
June 13, 2016 | Wits UniversityEstimated reading time: 3 minutes
African researchers demonstrate a 100x increase in the amount of information that can be 'packed into light'.
The rise of big data and advances in information technology has serious implications for our ability to deliver sufficient bandwidth to meet the growing demand.
Researchers at the University of the Witwatersrand in Johannesburg, South Africa, and the Council for Scientific and Industrial Research (CSIR) are looking at alternative sources that will be able to take over where traditional optical communications systems are likely to fail in future.
In their latest research, published online today (10 June 2016) in the scientific journal, Nature, the team from South Africa and Tunisia demonstrate over 100 patterns of light used in an optical communication link, potentially increasing the bandwidth of communication systems by 100 times.
The idea was conceived by Professor Andrew Forbes from Wits University, who led the collaboration. The key experiment was performed by Dr Carmelo Rosales-Guzman, a Research Fellow in the Structured Light group in the Wits School of Physics, and Dr Angela Dudley of the CSIR, an honorary academic at Wits.
Bracing for the bandwidth ceiling
Traditional optical communication systems modulate the amplitude, phase, polarisation, colour and frequency of the light that is transmitted. Yet despite these technologies, we are predicted to reach a bandwidth ceiling in the near future.
But light also has a “pattern” – the intensity distribution of the light, that is, how it looks on a camera or a screen.
Since these patterns are unique, they can be used to encode information:
pattern 1 = channel 1 or the letter A,
pattern 2 = channel 2 or the letter B, and so on.
What does this mean?
That future bandwidth can be increased by precisely the number of patterns of light we are able to use.
Ten patterns mean a 10x increase in existing bandwidth, as 10 new channels would emerge for data transfer.
At the moment modern optical communication systems only use one pattern. This is due to technical hurdles in how to pack information into these patterns of light, and how to get the information back out again.
How the research was done
In this latest work, the team showed data transmission with over 100 patterns of light, exploiting three degrees of freedom in the process.
They used digital holograms written to a small liquid crystal display (LCD) and showed that it is possible to have a hologram encoded with over 100 patterns in multiple colours.
“This is the highest number of patterns created and detected on such a device to date, far exceeding the previous state-of-the-art,” says Forbes.
One of the novel steps was to make the device ‘colour blind’, so the same holograms can be used to encode many wavelengths.
According to Rosales-Guzman to make this work “100 holograms were combined into a single, complex hologram. Moreover, each sub-hologram was individually tailored to correct for any optical aberrations due to the colour difference, angular offset and so on”.
Packing more information into light has the potential to increase bandwidth by 100 times
What’s next?
The next stage is to move out of the laboratory and demonstrate the technology in a real-world system.
“We are presently working with a commercial entity to test in just such an environment,” says Forbes. The approach of the team could be used in both free-space and optical fibre networks.
About the project
The first experiments on the topic were carried out by Abderrahmen Trichili of Sup’Com (Tunisia) as a visiting student to South Africa as part of an African Laser Centre funded research project. The other team members included Bienvenu Ndagano (Wits), Dr Amine Ben Salem (Sup’Com) and Professor Mourad Zghal (Sup’Com), all of who contributed significantly to the work.
This project was supported by the African Laser Centre, a virtual centre funded by the South African Department of Science and Technology (DST) to support research collaborations between African countries in the field of photonics.
Suggested Items
2025 ASEAN IT Spending Growth Slows to 5.9% as AI-Powered IT Expansion Encounters Post-Boom Normalization
06/26/2025 | IDCAccording to the IDC Worldwide Black Book: Live Edition, IT spending across ASEAN is projected to grow by 5.9% in 2025 — down from a robust 15.0% in 2024.
Rethinking How Operators Interface With the Line
06/11/2025 | Nolan Johnson, SMT007 MagazineJurgen Schmerler, CEO of WaveOn, reveals how AI and large language models are revolutionizing electronics manufacturing. By integrating AI with machinery, operators can access real-time, multimodal information for troubleshooting and maintenance, significantly reducing training time and enhancing efficiency. He discusses the industry's challenges, the customizable knowledge bases, and the future of proactive maintenance and process control.
Standards: The Roadmap for Your Ideal Data Package
05/29/2025 | Andy Shaughnessy, Design007 MagazineIn this interview, IPC design instructor Kris Moyer explains how standards can help you ensure that your data package has all the information your fabricator and assembler need to build your board the way you designed it, allowing them to use their expertise. As Kris says, even with IPC standards, there’s still an art to conveying the right information in your documentation.
Future-proofing Electronics: ChemFORWARD Works Toward Collaboration for Safer Chemistry
05/19/2025 | Rachel Simon, ChemFORWARDThe electronics industry is facing a critical juncture. As consumer demand for sustainable products rises and regulatory pressures intensify, companies must prioritize the safety of their products and processes. This means not only complying with evolving chemical restrictions but also proactively seeking safer alternatives.
CACI’s Mission-Critical Technology will Accelerate the Delivery of Electronic Warfighting Capabilities to the U.S. Navy’s Existing Fleet
05/13/2025 | CACI International Inc.CACI International Inc announced today that it has been awarded additional work by the U.S. Navy to procure enhancements to the current fielded Shipboard Information Warfare Exploit system under its existing contract for Spectral, a next-generation shipboard signals intelligence (SIGINT), electronic warfare (EW), and information operations (IO) weapon system.