Spintronics: Resetting the future of Heat Assisted Magnetic Recording
June 15, 2016 | HZBEstimated reading time: 2 minutes

A HZB team has examined thin films of Dysprosium-Cobalt sputtered onto a nanostructured membrane at BESSY II. They showed that new patterns of magnetization could be written in a quick and easy manner after warming the sample to only 80 °Celsius, which is a much lower temperature as compared to conventional Heat Assisted Magnetic Recording systems. This paves the way to fast and energy efficient ultrahigh density data storage.
The nanostructured membrane has a honeycomb pattern with nanoholes of 68 nm in diameter. The nanoholes pin down the magnetic domains.
To increase data density further in storage media, materials systems with stable magnetic domains on the nanoscale are needed. For overwriting a specific nanoscopic region with new information, a laser is used to heat locally the bit close to the so called Curie-Temperature, typically several hundred degrees Celsius. Upon cooling, the magnetic domain in this region can be reoriented in a small external magnetic field, known as Heat Assisted Magnetic Recording (HAMR). In industry, Iron-Platinum materials are currently used as magnetic media for the development of such HAMR-data storage devices.
Magnetic signals mapped at BESSY II before and after heating
A HZB team has now examined a new storage media system of Dysprosium and Cobalt, which shows key advantages with respect to conventional HAMR materials: A much lower writing temperature, a higher stability of the magnetic bits, and a versatile control of the spin orientation within individual magnetic bits. They achieved this by sputtering a thin film of Dysprosium and Cobalt onto a nanostructured membrane. The membrane was produced by scientific cooperation partners at the Institute of Materials Science of Madrid. The system shows a honeycomb antidot pattern with distances of 105 nanometers between nanoholes, which are 68 nanometers in diameter. These nanoholes act themselves as pinning centers for stabilizing magnetic wall displacements. The magnetic moments of DyCo5 are perpendicular to the plane and stable against external magnetic fields.
Energy efficient process
HZB-physicist Dr. Jaime Sánchez-Barriga and his team could demonstrate that warming the system to only 80 degrees Celsius is sufficient to tilt the magnetic moments in the DyCo5 film parallel to the surface plane. With measurements at the PEEM and XMCD instruments at BESSY II they could map precisely the magnetic signals before, during and after warming. After cooling to room temperature it is then easy to reorient the magnetic domains with a writing head and to encode new information. “This process in DyCo5 is energy efficient and very fast”, states Dr. Florin Radu, co-author of the study. “Our results show that there are alternative candidates for ultrahigh density HAMR storage systems, which need less energy and promise other important advantages as well”, adds Sánchez-Barriga.
Suggested Items
New Database of Materials Accelerates Electronics Innovation
05/02/2025 | ACN NewswireIn a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have built a comprehensive new database of dielectric material properties curated from thousands of scientific papers.
DuPont Announces Additional Leaders and Company Name for the Intended Spin-Off of the Electronics Business
04/29/2025 | PRNewswireDuPont announced Qnity Electronics, Inc. as the name of the planned independent Electronics public company that will be created through the intended spin-off of its Electronics business.
2024 Global Semiconductor Materials Market Posts $67.5 Billion in Revenue
04/29/2025 | SEMIGlobal semiconductor materials market revenue increased 3.8% to $67.5 billion in 2024, SEMI, the global industry association representing the electronics design and manufacturing supply chain, reported in its Materials Market Data Subscription (MMDS).
New RF Materials Offer Options for RF Designers
04/29/2025 | Andy Shaughnessy, Design007 MagazineThe RF materials arena has changed quite a bit in the past decade. The newest thermoset laminates boast performance numbers that are almost competitive with PTFE, but without the manufacturability challenges. At IPC APEX EXPO this year, I spoke with Brent Mayfield, business development manager at AGC Multi Material America. Brent walked through some recent innovations in RF materials, advances in resin systems, and the many design trade-offs for RF engineers to consider for each material set.
Discovery Opens Doors for Cheaper and Quicker Battery Manufacturing
04/23/2025 | PNNLThe discovery centers on sublimation, a commonly known process whereby under the right conditions, a solid turns directly into a vapor. Sublimation is what creates the tail of a comet as it flies by the sun. As the comet’s icy shell heats up, the ice instantly becomes vapor, instead of first melting into liquid water.