GraphExeter Illuminates Bright New Future for Flexible Lighting Devices
June 23, 2016 | University of ExeterEstimated reading time: 2 minutes
A team of Engineers and Physicists from Exeter have discovered that GraphExeter – a material adapted from the ‘wonder material’ graphene - can substantially improve the effectiveness of large, flat, flexible lighting.
By using GraphExeter, the most transparent, lightweight and flexible material for conducting electricity, instead of pure graphene, the team have increased the brightness of flexible lights by up to almost 50 per cent.
The research has also shown that using GraphExeter makes the lights 30 per cent more efficient than existing examples of flexible lighting, which are based on state-of-the-art commercial polymers.
The research team believe the breakthrough could help significantly improve the viability of the next generation of flexible screens, which could be used for display screens, smartphones, wearable electronic devices, such as clothing containing computers or MP3 players.
The study is published in respected scientific journal, ACS Materials and Interfaces, on Thursday, 16 June 2016.
One of the lead researchers, University of Exeter physicist Dr Saverio Russo, said: “This exciting development shows there is a bright future for the use of GraphExeter in transforming flexible lighting on a mass scale, and could help revolutionise the electronics industry.
“Not only are lights that utilise GraphExeter much brighter, they are also far more resilient to repeated flexing, which makes ‘bendy’ screens much more feasible for day to day goods such as mobile phones.”
Currently, flexible screens are still in their infancy and although they are useable, the size of the screens are limited by the materials used for mass production, which can cause a visible gradient of brightness as the size of screen increases.
By substituting graphene for GraphExeter, the team of researchers were able to create a lit screen that showed a far greater and more consistent light than has previously been possible. Furthermore, the screens were more resilient to continued flexing, meaning that they have a longer shelf-life before needing to be replaced.
Dr Monica Craciun, also from the University of Exeter added: “The next step will be to embed these ultra-flexible GraphExeter lights on textile fibres and pioneer ground-breaking applications in health care light therapy.”
At just one atom thick, graphene is the thinnest substance capable of conducting electricity. It is very flexible and is one of the strongest known materials. The race has been on for scientists and engineers to adapt graphene for flexible electronics. This has been a challenge because of its sheet resistance, graphene dissipates large amounts of energy.
In 2012 the teams of Dr Craciun and Profesor Russo, from the University of Exeter’s Centre for Graphene Science, discovered that sandwiched molecules of ferric chloride between two graphene layers make a whole new system that is more than a thousand times a better conductor of electricity than graphene and by far the best known transparent material able to conduct electricity. The same team have now discovered that GraphExeter is also more stable than many transparent conductors commonly used by, for example, the display industry.
Suggested Items
Intervala Hosts Employee Car and Motorcycle Show, Benefit Nonprofits
08/27/2024 | IntervalaIntervala hosted an employee car and motorcycle show, aptly named the Vala-Cruise and it was a roaring success! Employees had the chance to show off their prized wheels, and it was incredible to see the variety and passion on display.
KIC Honored with IPC Recognition for 25 Years of Membership and Contributions to Electronics Manufacturing Industry
06/24/2024 | KICKIC, a renowned pioneer in thermal process and temperature measurement solutions for electronics manufacturing, is proud to announce that it has been recognized by IPC for 25 years of membership and significant contributions to electronics manufacturing.
Boeing Starliner Spacecraft Completes Successful Crewed Docking with International Space Station
06/07/2024 | BoeingNASA astronauts Barry "Butch" Wilmore and Sunita "Suni" Williams successfully docked Boeing's Starliner spacecraft to the International Space Station (ISS), about 26 hours after launching from Cape Canaveral Space Force Station.
KIC’s Miles Moreau to Present Profiling Basics and Best Practices at SMTA Wisconsin Chapter PCBA Profile Workshop
01/25/2024 | KICKIC, a renowned pioneer in thermal process and temperature measurement solutions for electronics manufacturing, announces that Miles Moreau, General Manager, will be a featured speaker at the SMTA Wisconsin Chapter In-Person PCBA Profile Workshop.
The Drive Toward UHDI and Substrates
09/20/2023 | I-Connect007 Editorial TeamPanasonic’s Darren Hitchcock spoke with the I-Connect007 Editorial Team on the complexities of moving toward ultra HDI manufacturing. As we learn in this conversation, the number of shifting constraints relative to traditional PCB fabrication is quite large and can sometimes conflict with each other.