Scientists Explain Unusual and Effective Features in Perovskite
June 28, 2016 | Moscow Institute of Physics and TechnologyEstimated reading time: 2 minutes

Perovskite is a material with an almost ideal structure. The majority of high-temperature superconductors are perovskite-based due to their non-ideal structure. The material can also be used to produce flexible solar batteries without rare-earth metals, which would help to reduce costs and enable large-scale manufacture.
One of the authors notes the manganite-like properties of perovskites. "This material exhibits many interesting and intriguing properties, most notably giant magnetoresistance. Many manganite properties are unknown, despite the fact that manganites have been studied for decades. We tried to work out what the conduction mechanism is of one of the most common compounds - Pr1-xCaxMnO3," he says. All these features have been experimentally discovered, but the processes to explain these unique properties are unknown.
Semiconductors were discovered more than 150 years ago. Electricity was a new development at the time. It was obvious that there were isolators like rubber and glass, conductors like copper and gold, and some uncertain materials, semiconductors, which did not fit into any category. The mechanisms of semiconductors remained unknown for about a century. It was not until the 1930s that the problem was solved and the first transistor was made. Nowadays it is difficult to imagine any electronic device without transistors.
Unfortunately, it is not possible to see charge movement in a material under a microscope. This is why researchers at Terahertz Spectroscopy Laboratory decided to use indirect detection methods. To test which particles are conductive, they applied different frequency voltages and measured the relationship between frequency and induced current. The scientists measured the frequency and temperature dependence of conductivity and permittivity in a broad frequency range (5-3000 cm-1) to cover all the bases. Wide temperature ranges - from 10 to 300 K (-263 to 27 °C) - of the samples were obtained to distinguish similar dependences of samples with different conduction mechanisms. But even this was insufficient to clarify the nature of charge carries. For this reason, researchers compared perovskites with different ratios of calcium (Ca) and praseodymium (Pr).
The group of scientists headed by Boris Gorshunov, Terahertz Spectroscopy Laboratory supervisor, (Lenar Kadyrov PhD, and laboratory scientists Elena Zhukova and Vladimir Anzin are also authors of this article) thus discovered that the charge carriers in Pr1-xCaxMnO3 perovskites are polarons. A polaron is an electron moving through the constituent atoms of a material, causing the neighboring positive charges to shift toward it and the neighboring negative charges to shift away. The properties of perovskites are ideal for electron-phonon (phonons are vibrations in a crystal lattice) coupling, determined by the interplay between symmetry breaking interactions. The researchers established that polarons move coherently (as one unit). That is to say charge carriers behave more like uncoupled particles. The idea of coherence is used in lasers, superconductors, highly accurate distance measurements, quantum calculations etc.
Establishing how conduction occurs could help perovskite research projects and large-scale applications to progress. For example, there is already a high-efficiency perovskite-based device for separating water into oxygen and hydrogen. Perovskites can also be used as LEDs, however they are currently only able to function at the temperature of liquid nitrogen.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Electrodeposited Copper Foils Market to Grow by $11.7 Billion Over 2025-2032
09/18/2025 | Globe NewswireThe global electrodeposited copper foils market is poised for dynamic growth, driven by the rising adoption in advanced electronics and renewable energy storage solutions.
MacDermid Alpha Showcases Advanced Interconnect Solutions at PCIM Asia 2025
09/18/2025 | MacDermid Alpha Electronics SolutionsMacDermid Alpha Electronic Solutions, a global leader in materials for power electronics and semiconductor assembly, will showcase its latest interconnect innovations in electronic interconnect materials at PCIM Asia 2025, held from September 24 to 26 at the Shanghai New International Expo Centre, Booth N5-E30
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.