Probing Quantum Phenomena in Tiny Transistors
July 7, 2016 | Michigan Technological UniversityEstimated reading time: 4 minutes
The electrical current between source and drain in a nanowire FET cannot be understood using classical physics. That's because electrons do strange things at such a tiny scale.
"Imagine a fish being trapped inside a fish tank; if fish has enough energy, it could jump up over the wall," Pati says. “Now imagine an electron in the tank: if it has enough energy, the electron could jump out—but even if it doesn’t have enough energy, the electron can tunnel through the side walls, so there is a finite probability that we would find an electron outside the tank.”
This is known as quantum tunneling. For Pati, catching the electron in action inside the nanowire transistors is the key to understanding their superior performance. He and his team used what is called a first-principles quantum transport approach to know what causes the electrons to tunnel efficiently in the core-shell nanowires.
The quantum tunneling of electrons—an atomic-scale game of hopscotch—is what enables the electrons to move through the nanowire materials connecting the source and drain. And the movement gets more specific than that: the electrons almost exclusively hop across the germanium shell but not through the silicon core. They do so through the aligned pz-orbitals of the germanium.
Quantum tunneling of electrons across germanium atoms in a core-shell nanowire transistor. The close-packed alignment of dumbbell-shaped pz-orbitals direct the physics of tunneling.
Simply put, these orbitals, which are dumbbell-shaped regions of high probability for finding an electron, are perfect landing pads for tunneling electrons. The specific alignment—color-coded in the diagram above—makes quantum tunneling even easier. It's like the difference between trying to burrow through a well with steel walls versus sand walls. The close-packed alignment of the pz-orbitals in the germanium shell enable electrons to tunnel from one atom to another, creating a much higher electrical current when switched on. In the case of homogeneous silicon nanowires, there is no close-packed alignment of the pz-orbitals, which explains why they are less effective FETs.
Nanowires in Electronics
There are many potential uses for nanowire FETs. Pati and his team write in their Nano Letters paper that they "expect that the electronic orbital level understanding gained in this study would prove useful for designing a new generation of core−shell nanowire FETs."
Specifically, having a heterogeneous structure offers additional mobility control and superior performance over the current generation of transistors, in addition to compatibility with the existing silicon technology. The core-shell nanowire FETs could transform our future by making computers more powerful, phones and wearables smarter, cars more interconnected and electrical grids more efficient. The next step is simply taking a small quantum leap.
Page 2 of 2Suggested Items
Cetec ERP Expands into Larger Office to Support Continued Growth
07/11/2025 | Cetec ERPCetec ERP, a leading provider of cloud-based ERP software for manufacturers, has officially relocated to a larger, modern office facility in central Austin as of July 2, 2025.
Bourns Introduces Line Filter Series with Ferrite Toroid Core that Delivers High Impedance Over a Broad Frequency Range
05/30/2025 | BournsBourns, Inc., a leading manufacturer and supplier of electronic components for power, protection, and sensing solutions, introduced a new filter series designed with a ferrite toroid core. Bourns specifically engineered its SRF1360 line filters to deliver high impedance over a broad frequency range.
SCHMID Group Update on Order Situation and Market Development in 2025
05/22/2025 | SCHMID GroupFollowing a challenging year in 2024, which was particularly affected by the ongoing trade conflict between the USA and China, the SCHMID Group is now experiencing a welcome turnaround. Incoming orders are currently within the expected range, confirming the positive market trend that began to emerge at the end of 2024.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
05/16/2025 | Nolan Johnson, I-Connect007My picks for the week include—as a complement to the trade agreement news—SEMI's public support of a bill including new tax credit eligibility for semiconductor manufacturers. This provision feels quite similar to the current PCB investment bill that's been introduced to the current Congress; here’s hoping Congress takes a more holistic approach to electronics manufacturing.
DuPont Announces Additional Leaders and Company Name for the Intended Spin-Off of the Electronics Business
04/29/2025 | PRNewswireDuPont announced Qnity Electronics, Inc. as the name of the planned independent Electronics public company that will be created through the intended spin-off of its Electronics business.