Probing Quantum Phenomena in Tiny Transistors
July 7, 2016 | Michigan Technological UniversityEstimated reading time: 4 minutes
The electrical current between source and drain in a nanowire FET cannot be understood using classical physics. That's because electrons do strange things at such a tiny scale.
"Imagine a fish being trapped inside a fish tank; if fish has enough energy, it could jump up over the wall," Pati says. “Now imagine an electron in the tank: if it has enough energy, the electron could jump out—but even if it doesn’t have enough energy, the electron can tunnel through the side walls, so there is a finite probability that we would find an electron outside the tank.”
This is known as quantum tunneling. For Pati, catching the electron in action inside the nanowire transistors is the key to understanding their superior performance. He and his team used what is called a first-principles quantum transport approach to know what causes the electrons to tunnel efficiently in the core-shell nanowires.
The quantum tunneling of electrons—an atomic-scale game of hopscotch—is what enables the electrons to move through the nanowire materials connecting the source and drain. And the movement gets more specific than that: the electrons almost exclusively hop across the germanium shell but not through the silicon core. They do so through the aligned pz-orbitals of the germanium.
Quantum tunneling of electrons across germanium atoms in a core-shell nanowire transistor. The close-packed alignment of dumbbell-shaped pz-orbitals direct the physics of tunneling.
Simply put, these orbitals, which are dumbbell-shaped regions of high probability for finding an electron, are perfect landing pads for tunneling electrons. The specific alignment—color-coded in the diagram above—makes quantum tunneling even easier. It's like the difference between trying to burrow through a well with steel walls versus sand walls. The close-packed alignment of the pz-orbitals in the germanium shell enable electrons to tunnel from one atom to another, creating a much higher electrical current when switched on. In the case of homogeneous silicon nanowires, there is no close-packed alignment of the pz-orbitals, which explains why they are less effective FETs.
Nanowires in Electronics
There are many potential uses for nanowire FETs. Pati and his team write in their Nano Letters paper that they "expect that the electronic orbital level understanding gained in this study would prove useful for designing a new generation of core−shell nanowire FETs."
Specifically, having a heterogeneous structure offers additional mobility control and superior performance over the current generation of transistors, in addition to compatibility with the existing silicon technology. The core-shell nanowire FETs could transform our future by making computers more powerful, phones and wearables smarter, cars more interconnected and electrical grids more efficient. The next step is simply taking a small quantum leap.
Page 2 of 2Suggested Items
DuPont Announces Additional Leaders and Company Name for the Intended Spin-Off of the Electronics Business
04/29/2025 | PRNewswireDuPont announced Qnity Electronics, Inc. as the name of the planned independent Electronics public company that will be created through the intended spin-off of its Electronics business.
Elementary Mr. Watson: Navigating RF—A Glide Path Approach to Design Success
04/24/2025 | John Watson -- Column: Elementary, Mr. WatsonOn a flight, I can always tell when we begin our descent because that subtle drop in my stomach tells me the altitude has changed. Landing an airplane involves a gradual, precise process called the glide path. It descends at the correct speed and 3-degree angle to touch down smoothly and safely on the runway without bouncing or coming to a sudden stop. Pilots use specialized tools like the Instrument Landing System (ILS) or GPS to stay on the correct path. Lights on the ground, called PAPI lights, help pilots know if they are too high or too low.
Hon Hai Research Institute's Fourth-generation Semiconductor Application Reaches a New Milestone
04/21/2025 | FoxconnHon Hai Research Institute ( HHRI ) Semiconductor Research Institute has conducted cross-border cooperation with Yang Ming Chiao Tung University and the University of Texas at Austin to invest in forward-looking research on fourth-generation semiconductors.
Trouble in Your Tank: Organic Addition Agents in Electrolytic Copper Plating
04/15/2025 | Michael Carano -- Column: Trouble in Your TankThere are numerous factors at play in the science of electroplating or, as most often called, electrolytic plating. One critical element is the use of organic addition agents and their role in copper plating. The function and use of these chemical compounds will be explored in more detail.
Würth Elektronik ICS at PCIM Europe 2025
04/14/2025 | Wurth ElektronikWürth Elektronik ICS will be exhibiting at PCIM in Nuremberg from 6 to 8 May 2025. The specialist for PCB connection solutions in the high-current sector and inventor of Powerelements will be focussing on power electronics at exhibition stand 337 in hall A6.