Probing Quantum Phenomena in Tiny Transistors
July 7, 2016 | Michigan Technological UniversityEstimated reading time: 4 minutes
The electrical current between source and drain in a nanowire FET cannot be understood using classical physics. That's because electrons do strange things at such a tiny scale.
"Imagine a fish being trapped inside a fish tank; if fish has enough energy, it could jump up over the wall," Pati says. “Now imagine an electron in the tank: if it has enough energy, the electron could jump out—but even if it doesn’t have enough energy, the electron can tunnel through the side walls, so there is a finite probability that we would find an electron outside the tank.”
This is known as quantum tunneling. For Pati, catching the electron in action inside the nanowire transistors is the key to understanding their superior performance. He and his team used what is called a first-principles quantum transport approach to know what causes the electrons to tunnel efficiently in the core-shell nanowires.
The quantum tunneling of electrons—an atomic-scale game of hopscotch—is what enables the electrons to move through the nanowire materials connecting the source and drain. And the movement gets more specific than that: the electrons almost exclusively hop across the germanium shell but not through the silicon core. They do so through the aligned pz-orbitals of the germanium.
Quantum tunneling of electrons across germanium atoms in a core-shell nanowire transistor. The close-packed alignment of dumbbell-shaped pz-orbitals direct the physics of tunneling.
Simply put, these orbitals, which are dumbbell-shaped regions of high probability for finding an electron, are perfect landing pads for tunneling electrons. The specific alignment—color-coded in the diagram above—makes quantum tunneling even easier. It's like the difference between trying to burrow through a well with steel walls versus sand walls. The close-packed alignment of the pz-orbitals in the germanium shell enable electrons to tunnel from one atom to another, creating a much higher electrical current when switched on. In the case of homogeneous silicon nanowires, there is no close-packed alignment of the pz-orbitals, which explains why they are less effective FETs.
Nanowires in Electronics
There are many potential uses for nanowire FETs. Pati and his team write in their Nano Letters paper that they "expect that the electronic orbital level understanding gained in this study would prove useful for designing a new generation of core−shell nanowire FETs."
Specifically, having a heterogeneous structure offers additional mobility control and superior performance over the current generation of transistors, in addition to compatibility with the existing silicon technology. The core-shell nanowire FETs could transform our future by making computers more powerful, phones and wearables smarter, cars more interconnected and electrical grids more efficient. The next step is simply taking a small quantum leap.
Page 2 of 2Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Global Interposer Market to Surge Nearly Fivefold by 2034
09/15/2025 | I-Connect007 Editorial TeamRevenue for the global interposer market is projected to climb from $471 million in 2025 to more than $2.3 billion by 2034, according to a new report from Business Research Insights. The growth represents a CAGR of nearly 20 percent over the forecast period.
The Right Approach: Get Ready for ISO 9001 Version 6
09/10/2025 | Steve Williams -- Column: The Right ApproachWe are well past the normal five to seven years that a new revision of the ISO 9001 international quality standard gets released. It may be finished toward the end of 2025, with implementation starting in 2026, and there will be as many significant changes as we saw in the current 2015 version.
Alpha and Omega Semiconductor Announces Advanced eFuse that Meets High Reliability Server Application Requirements
08/13/2025 | Alpha and Omega SemiconductorAlpha and Omega Semiconductor Limited (AOS), a designer, developer, and global supplier of a broad range of discrete power devices, wide bandgap power devices, power management ICs, and modules, announced the release of its AOZ17517QI series, a 60A eFuse in a compact 5mm x 5mm QFN package.
American Made Advocacy: A Growing Presence in Washington in Turbulent Times
07/29/2025 | Shane Whiteside -- Column: American Made AdvocacyLast month, PCBAA held its fourth annual meeting in Washington, D.C. It was our largest gathering to date and included speakers from the House and Senate, the Department of Commerce, and OEMs Lockheed Martin, RTX, and Northrop Grumman. We also spent a day on Capitol Hill educating lawmakers and their staff about the importance of a secure domestic microelectronics supply chain.
Thanks a Million: STI Electronics Celebrates Creating 1 Million Power Supply Boards for Night Vision Goggles
07/28/2025 | Sandy Gentry, Community MagazineIn an industry where precision and reliability are paramount, STI Electronics Inc. recently celebrated a remarkable milestone: the production of its 1 millionth power supply board for L3Harris Technologies’ state-of-the-art night vision goggles. This achievement not only marks a significant volume for military electronics manufacturing but also highlights the enduring partnership between STI and L3Harris.