Setting the Gold Standard
July 11, 2016 | University of FloridaEstimated reading time: 1 minute

A team of University of Florida researchers has figured out how gold can be used in crystals grown by light to create nanoparticles, a discovery that has major implications for industry and cancer treatment and could improve the function of pharmaceuticals, medical equipment and solar panels.
Nanoparticles can be “grown” in crystal formations with special use of light, in a process called plasmon-driven synthesis. However, scientists have had limited control unless they used silver, but silver limits the uses for medical technology. The team is the first to successfully use gold, which works well within the human body, with this process.
“How does light actually play a role in the synthesis? [This knowledge] was not well developed,” said David Wei, an associate professor of chemistry who led the research team. “Gold was the model system to demonstrate this.”
Gold is highly desired for nanotechnology because it is malleable, does not react with oxygen and conducts heat well. Those properties make gold an ideal material for nanoparticles, especially those that will be placed in the body.
When polyvinylpyrrolidone, or PVP, a substance commonly found in pharmaceutical tablets, is used in the plasmon-driven synthesis, it enables scientists to better control the growth of crystals. In Wei’s research, PVP surprised the team by showing its potential to relay light-generated “hot” electrons to a gold surface to grow the crystals.
The research describes the first plasmonic synthesis strategy that can make high-yield gold nanoprisms. Even more exciting, the team has demonstrated that visible-range and low-power light can be used in the synthesis. Combined with nanoparticles being used in solar photovoltaic devices, this method can even harness solar energy for chemical synthesis, to make nanomaterials or for general applications in chemistry.
Wei has spent the last decade working in nanotechnology. He is intrigued by its applications in photochemistry and biomedicine, especially in targeted drug delivery and photothermal therapeutics, which is crucial to cancer treatment. His team includes collaborators from Pacific Northwest National Laboratory, where he has worked as a visiting scholar, and Brookhaven National Laboratory. In addition, the project has provided an educational opportunity for chemistry students: one high school student (through UF’s Student Science Training Program), two University scholars who also funded by the Howard Hughes Medical Institute, five graduate students and two postdocs.
Suggested Items
TT Electronics Achieves ISO 13485 Medical Certification at Mexicali EMS Facility
06/27/2025 | TT ElectronicsThis milestone underscores TT Electronics’ commitment to delivering high-quality, compliant, and reliable manufacturing solutions to its global customers in healthcare and life sciences.
Benchmark Strengthens Presence in Jalisco with Grand Opening of Advanced Manufacturing Facility in Guadalajara
06/21/2025 | BUSINESS WIREBenchmark Electronics, Inc., a global provider of engineering, design, and manufacturing services, celebrated the grand opening of its brand-new manufacturing facility in Guadalajara, Mexico.
Quasar Medical to Acquire Nordson MEDICAL Design and Development business in Galway, Ireland and Tecate, Mexico
06/02/2025 | Quasar MedicalQuasar Medical, a global leader in the manufacturing of interventional and complex minimally invasive devices, announced it has signed a definitive agreement with Nordson Corporation to acquire its design and development contract manufacturing businesses in Galway, Ireland, and Tecate, Mexico.
Kimball Electronics to Open New Medical Manufacturing Facility
05/30/2025 | Kimball ElectronicsKimball Electronics has announced the addition of a 300,000 sq ft manufacturing facility in Indianapolis centered on the medical industry.
Evolve Manufacturing Celebrates 100 Years of Combined Leadership in Medical Device Manufacturing
05/26/2025 | Evolve ManufacturingEvolve Manufacturing Inc., a leading provider of end-to-end contract manufacturing services for medical device and life sciences instrument companies, proudly celebrates 100 years of combined medical device leadership among its expert team.