Researchers Make Groundbreaking Graphene Discovery
July 15, 2016 | Trinity College DublinEstimated reading time: 2 minutes
Researchers in AMBER, the Science Foundation Ireland-funded materials science centre, hosted in Trinity College Dublin, have discovered a new behaviour of the wonder material graphene.
Efficient ways to pattern and assemble graphene, especially in parallel, have remained a significant challenge for researchers worldwide. But the research breakthrough published in the prestigious journal Nature this week introduces a significant new fabrication method for graphene, as well as creating new technologies that harness the properties of these molecular sheets in ways not previously envisaged.
The researchers, Professor Graham Cross and postdoctoral fellow Dr James Annett of AMBER and the School of Physics at Trinity College Dublin, found that they can induce graphene, a sheet of the element carbon only one atom thick, to spontaneously assemble into ribbons and other shapes while lying on a surface. The effect is potent enough to make large graphene structures almost visible to the naked eye, and it operates in air at room temperature.
In the short term, the researchers expect their findings will be useful to pattern graphene sheets to simplify the production of electronic and other devices in larger volumes. However, they also think the self-assembly effect itself may be important as an active component of future sensors, actuators and machines.
James Annett, who was a graduate student in Cross’ lab at the time of the discovery, said: “I was investigating the properties of graphene as a kind of dry super-lubricant. One day I noticed that cut-out shapes that had been formed during my experiments were changing over time. When I looked more closely, I found that beautiful, well-defined structures had formed in the graphene sheets all by themselves. I realised then that the methods we were using to investigate friction were actually configuring the graphene to spontaneously rearrange itself.”
Fundamentally, the observations reported by the authors in the journal Nature reveal how heat energy causes a flat graphene sheet to try to form its more familiar three-dimensional state known as graphite. A mathematical model to explain why the effect works is included as part of their publication. Cross believes this is a new class of solid matter behaviour specific to molecularly thin sheets.
Professor Graham Cross said: “Over twenty years ago, it was suggested that graphene could be deliberately folded and cut into useful shapes as a kind of molecular origami. Our discovery shows there exists a much richer potential for these kinds of two dimensional materials. We can make them behave like a self-animated sheet that folds, tears and slides while peeling itself away from a surface. Even better, we have figured out how to control the effect and make it happen in different places in the sheet at the same time.”
Graphene is part of a family of recently discovered two-dimensional materials that may revolutionise the electronics used in smart phones and computers, as well as produce light, high-strength composite materials. Now, with the phenomena of self-assembly added to their list of abilities, these materials might enable new devices known as nanoelectromechanical systems, which are connecting up the virtual world to the real world through the Internet of Things.
Suggested Items
DuPont Announces Additional Leaders and Company Name for the Intended Spin-Off of the Electronics Business
04/29/2025 | PRNewswireDuPont announced Qnity Electronics, Inc. as the name of the planned independent Electronics public company that will be created through the intended spin-off of its Electronics business.
2024 Global Semiconductor Materials Market Posts $67.5 Billion in Revenue
04/29/2025 | SEMIGlobal semiconductor materials market revenue increased 3.8% to $67.5 billion in 2024, SEMI, the global industry association representing the electronics design and manufacturing supply chain, reported in its Materials Market Data Subscription (MMDS).
New RF Materials Offer Options for RF Designers
04/29/2025 | Andy Shaughnessy, Design007 MagazineThe RF materials arena has changed quite a bit in the past decade. The newest thermoset laminates boast performance numbers that are almost competitive with PTFE, but without the manufacturability challenges. At IPC APEX EXPO this year, I spoke with Brent Mayfield, business development manager at AGC Multi Material America. Brent walked through some recent innovations in RF materials, advances in resin systems, and the many design trade-offs for RF engineers to consider for each material set.
Discovery Opens Doors for Cheaper and Quicker Battery Manufacturing
04/23/2025 | PNNLThe discovery centers on sublimation, a commonly known process whereby under the right conditions, a solid turns directly into a vapor. Sublimation is what creates the tail of a comet as it flies by the sun. As the comet’s icy shell heats up, the ice instantly becomes vapor, instead of first melting into liquid water.
Real Time with... IPC APEX EXPO 2025: DuPont Electronics Materials and Innovations
04/23/2025 | Real Time with...IPC APEX EXPODuPont is many things to many markets, but DuPont Electronics Materials is, perhaps, a bit out of the DuPont "norm," developing specialized electronic materials that are particularly focused on challenging areas such as flex circuits, high power PCBs and products that must withstand harsh environments. At IPC APEX EXPO, Marcy LaRont sat down with Shannon Dugan from DuPont Electronics Materials to discuss some big news. They are being spun off into an independent entity with a new CEO having just been announced as the show wrapped.