New Material Could Advance Superconductivity
July 28, 2016 | Carnegie Institution for ScienceEstimated reading time: 2 minutes

Scientists have looked for different ways to force hydrogen into a metallic state for decades. A metallic state of hydrogen is a holy grail for materials science because it could be used for superconductors, materials that have no resistance to the flow of electrons, which increases electricity transfer efficiency many times over. For the first time researchers, led by Carnegie's Viktor Struzhkin, have experimentally produced a new class of materials blending hydrogen with sodium that could alter the superconductivity landscape and could be used for hydrogen-fuel cell storage. The research is published in Nature Communications.
It had been predicted that certain hydrogen-rich compounds consisting of multiple atoms of hydrogen with so-called alkali metals like lithium, potassium or sodium, could provide a new chemical means to alter the compound's electronic structure. This, in turn, may lead the way to metallic high-temperature superconductors.
"The challenge is temperature," explained Struzhkin. "The only superconductors that have been produced can only exist at impractically cold temperatures. In recent years, there have been predictions of compounds with several atoms of hydrogen coupled with alkali metals that could exist at more practical temperatures. They are theorized to have unique properties useful to superconductivity."
Now, the predictions have been confirmed. The Struzhkin team included Carnegie researchers Duck Young Kim, Elissaios Stavrou, Takaki Muramatsu, Ho-Kwang Mao, and Alexander Goncharov, with researchers from other institutions.*
The team used theory to guide their experiments and measured the samples using both a method that reveals the atomic structure (X-ray diffraction) and a method that identifies molecules by characteristics such as their minute vibrations and rotations (Raman spectroscopy). Theoretically, the sodium/hydrogen material would be stable under pressure, have metallic characteristics and unique structures, and show superconducting properties.
The team conducted high-pressure/high-temperature experiments. Matter under these extreme conditions can morph into new structures with new properties. They squeezed lithium and sodium samples in a diamond anvil cell to enormous pressures while heating the samples using a laser. At pressures between 300,000 and 400,000 atmospheres (30-40 gigapascals, or GPa) and temperatures of about 3100°F (2000 kelvin), they observed, for the first time, structures of "polyhydrides," sodium with 3 hydrogen atoms (NaH3) and NaH7--sodium with seven atoms of hydrogen--in very unusual configurations. Three negative charged hydrogen atoms in the NaH7 material lined up and looked like one-dimensional hydrogen chains, which is a new phase that is very different from pure hydrogen.
"This configuration was originally predicted to exist in 1972, more than 40 years ago," remarked Duck Young Kim. "It turns out that our experiments are in complete agreement with the theory, which predicted the existence of NaH3. The bonus is that we also observed the compound with seven hydrogen atoms."
Struzhkin reflected, "Further work needs to be done to see if materials in this class can be produced at lower temperatures and pressures. But this new class of matter opens up a whole new world of possibilities."
Suggested Items
DuPont Announces Additional Leaders and Company Name for the Intended Spin-Off of the Electronics Business
04/29/2025 | PRNewswireDuPont announced Qnity Electronics, Inc. as the name of the planned independent Electronics public company that will be created through the intended spin-off of its Electronics business.
2024 Global Semiconductor Materials Market Posts $67.5 Billion in Revenue
04/29/2025 | SEMIGlobal semiconductor materials market revenue increased 3.8% to $67.5 billion in 2024, SEMI, the global industry association representing the electronics design and manufacturing supply chain, reported in its Materials Market Data Subscription (MMDS).
New RF Materials Offer Options for RF Designers
04/29/2025 | Andy Shaughnessy, Design007 MagazineThe RF materials arena has changed quite a bit in the past decade. The newest thermoset laminates boast performance numbers that are almost competitive with PTFE, but without the manufacturability challenges. At IPC APEX EXPO this year, I spoke with Brent Mayfield, business development manager at AGC Multi Material America. Brent walked through some recent innovations in RF materials, advances in resin systems, and the many design trade-offs for RF engineers to consider for each material set.
Discovery Opens Doors for Cheaper and Quicker Battery Manufacturing
04/23/2025 | PNNLThe discovery centers on sublimation, a commonly known process whereby under the right conditions, a solid turns directly into a vapor. Sublimation is what creates the tail of a comet as it flies by the sun. As the comet’s icy shell heats up, the ice instantly becomes vapor, instead of first melting into liquid water.
Real Time with... IPC APEX EXPO 2025: DuPont Electronics Materials and Innovations
04/23/2025 | Real Time with...IPC APEX EXPODuPont is many things to many markets, but DuPont Electronics Materials is, perhaps, a bit out of the DuPont "norm," developing specialized electronic materials that are particularly focused on challenging areas such as flex circuits, high power PCBs and products that must withstand harsh environments. At IPC APEX EXPO, Marcy LaRont sat down with Shannon Dugan from DuPont Electronics Materials to discuss some big news. They are being spun off into an independent entity with a new CEO having just been announced as the show wrapped.