Chemists Create Vitamin-driven Battery
August 4, 2016 | University of TorontoEstimated reading time: 3 minutes

A team of University of Toronto chemists has created a battery that stores energy in a biologically-derived unit, paving the way for cheaper consumer electronics that are easier on the environment.
The battery is similar to many commercially-available high-energy lithium-ion batteries with one important difference. It uses flavin from vitamin B2 as the cathode: the part that stores the electricity that is released when connected to a device.
“We've been looking to nature for a while to find complex molecules for use in a number of consumer electronics applications,” says Dwight Seferos, an associate professor in U of T’s department of chemistry and Canada Research Chair in Polymer Nanotechnology.
“When you take something made by nature that is already complex, you end up spending less time making new material,” says Seferos.
Background battery basics
To understand the discovery, it’s important to know that modern batteries contain three basic parts:
- a positive terminal – the metal part that touches devices to power them – connected to a cathode inside the battery casing
- a negative terminal connected to an anode inside the battery casing
- an electrolyte solution, in which ions can travel between the cathode and anode electrodes
When a battery is connected to a phone, iPod, camera or other device that requires power, electrons flow from the anode – the negatively charged electrode of the device supplying current – out to the device, then into the cathode and ions migrate through the electrolyte solution to balance the charge. When connected to a charger, this process happens in reverse.
The reaction in the anode creates electrons and the reaction in the cathode absorbs them when discharging. The net product is electricity. The battery will continue to produce electricity until one or both of the electrodes run out of the substance necessary for the reactions to occur.
Organic chemistry is kind of like Lego
While bio-derived battery parts have been created previously, this is the first one that uses bio-derived polymers – long-chain molecules – for one of the electrodes, essentially allowing battery energy to be stored in a vitamin-created plastic, instead of costlier, harder to process, and more environmentally-harmful metals such as cobalt.
“Getting the right material evolved over time and definitely took some test reactions,” says paper co-author and doctoral student Tyler Schon. “In a lot of ways, it looked like this could have failed. It definitely took a lot of perseverance.”
Schon, Seferos and colleagues happened upon the material while testing a variety of long-chain polymers – specifically pendant group polymers: the molecules attached to a 'backbone' chain of a long molecule.
“Organic chemistry is kind of like Lego,” he says. “You put things together in a certain order, but some things that look like they'll fit together on paper don't in reality. We tried a few approaches and the fifth one worked,” says Seferos.
Building a better power pack
The team created the material from vitamin B2 that originates in genetically-modified fungi using a semi-synthetic process to prepare the polymer by linking two flavin units to a long-chain molecule backbone.
This allows for a green battery with high capacity and high voltage – something increasingly important as the ‘Internet of Things’ continues to link us together more and more through our battery-powered portable devices.
“It's a pretty safe, natural compound," Seferos adds. “If you wanted to, you could actually eat the source material it comes from.”B2's ability to be reduced and oxidized makes its well-suited for a lithium ion battery.
“B2 can accept up to two electrons at a time,” says Seferos. “This makes it easy to take multiple charges and have a high capacity compared to a lot of other available molecules.”
A step to greener electronics
“It's been a lot of trial-and-error,” says Schon. “Now we're looking to design new variants that can be recharged again and again.”While the current prototype is on the scale of a hearing aid battery, the team hopes their breakthrough could lay the groundwork for powerful, thin, flexible, and even transparent metal-free batteries that could support the next wave of consumer electronics.
Suggested Items
Global PCB Connections: Let the Spec Fit the Board, Not Just the Brand
07/17/2025 | Jerome Larez -- Column: Global PCB ConnectionsIf you’ve ever seen an excellent PCB quote delayed, or worse, go cold because of a single line on the fab print, you’re not alone. Often, that line reads something like, “Use 370HR only,” or “IT-180A required.” These and other brand-name materials are proven performers, but unless your design needs that specific resin system (say, for RF performance, thermal reliability, or stringent CAF resistance), you may inadvertently be holding your job hostage.
The Pulse: Design Constraints for the Next Generation
07/17/2025 | Martyn Gaudion -- Column: The PulseIn Europe, where engineering careers were once seen as unpopular and lacking street credibility, we have been witnessing a turnaround in the past few years. The industry is now welcoming a new cohort of designers and engineers as people are showing a newfound interest in the profession.
Copper Price Surge Raises Alarms for Electronics
07/15/2025 | Global Electronics Association Advocacy and Government Relations TeamThe copper market is experiencing major turbulence in the wake of U.S. President Donald Trump’s announcement of a 50% tariff on imported copper effective Aug. 1. Recent news reports, including from the New York Times, sent U.S. copper futures soaring to record highs, climbing nearly 13% in a single day as manufacturers braced for supply shocks and surging costs.
Symposium Review: Qnity, DuPont, and Insulectro Forge Ahead with Advanced Materials
07/02/2025 | Barb Hockaday, I-Connect007In a dynamic and informative Innovation Symposium hosted live and on Zoom on June 25, 2025, representatives from Qnity (DuPont's electronics business), DuPont, and Insulectro discussed the evolving landscape of flexible circuit materials. From strategic corporate changes to cutting-edge polymer films, the session offered deep insight into design challenges, reliability, and next-gen solutions shaping the electronics industry.
Indium Corporation Expert to Present on Automotive and Industrial Solder Bonding Solutions at Global Electronics Association Workshop
06/26/2025 | IndiumIndium Corporation Principal Engineer, Advanced Materials, Andy Mackie, Ph.D., MSc, will deliver a technical presentation on innovative solder bonding solutions for automotive and industrial applications at the Global Electronics A