Spinning Electrons Could Lead to New Electronics
August 8, 2016 | University of ManchesterEstimated reading time: 1 minute

Among the unusual properties of graphene, one of the most exciting and least understood is the additional degree of freedom experienced by electrons.
It is called the pseudospin and it determines the probability to find electrons on neighbouring carbon atoms. The possibility to control this degree of freedom would allow for new types of experiments, but potentially also enable to use it for electronic applications.
Now, writing in Science, Manchester physicists demonstrate how electrons with well-controlled pseudospin can be injected into graphene. The scientists used two layers of graphene, rotated by a small angle with respect to each other and separated by a thin layer of boron nitride, another two-dimensional material and an excellent insulator.
Applying strong magnetic field parallel to the graphene layers, the pseudospin state of the tunnelling electrons can be chosen.
Graphene was first isolated from graphite in at The University of Manchester in 2004. Its range of superlative properties, including fantastic strength, conductivity, flexibility and transparency, has paved the way for applications ranging from water filtration to bendable smartphones; from rust-proof coatings to anti-cancer drug delivery systems.
Combining graphene with other materials, which individually have excellent characteristics complimentary to the extraordinary properties of graphene, has resulted in exciting scientific developments and could produce applications as yet beyond our imagination.
Sir Kostya Novoselov, who along with colleague Sir Andre Geim was awarded the Nobel prize for Physics for their ground-breaking experiments on graphene, believes the findings could have a significant impact.
He said: “Our experiments offer an unprecedented control over the quantum state of the electrons in graphene”.
Co-author Professor Vladimir Fal’ko added: “We hope that the opportunity to control the pseudospin and chirality of electrons in graphene will expand the range of quantum phenomena studied in this remarkable material”.
One of the lead authors, Dr Artem Mishchenko, is very optimistic. He said: “Who knows, maybe one day we will see chirotronics, alongside with spintronics, valleytronics and electronics”.
The research was also carried out by scientists from Laboratoire National des Champs Magnėtiques Intenses in Grenoble, France; Radboud University, Nijmegen, Netherlands; Institute of Microelectronics Technology and High Purity Materials, Chernogolovka, Russia; National University of Science and Technology, Moscow, Russia and The University of Nottingham.
Suggested Items
IIT Kharagpur Forge Strategic Partnership with Swansea University in Advance Smart Manufacturing and Materials Research
06/18/2025 | IIT KharagpurIn a significant step towards global academic and industrial collaboration, Swansea University and the Indian Institute of Technology Kharagpur (IIT KGP) signed a Memorandum of Understanding (MoU) to deepen research partnerships, promote academic exchange, and foster innovation in advanced manufacturing and materials engineering.
Delta Thailand Reinforces 4IR Leadership and Smart Energy Vision at i-Forum 2025
06/02/2025 | Delta ThailandDelta Thailand reaffirmed its role in advancing industrial automation and sustainable innovation at i-Forum 2025. Held on May 9 by the Faculty of Engineering at Kasetsart University in Bangkok, the forum focused on the theme “Leading the 4IR Revolution: Key Lessons from the WEF Global Lighthouse Network.”
Stephen Winchell Appointed DARPA Director
06/02/2025 | DARPAStephen Winchell was sworn in today as the 24th director of the Defense Advanced Research Projects Agency.
Hon Hai Research Institute Partners with Taiwan Academic Research Institute and KAUST to Participate in CLEO 2025
05/30/2025 | FoxconnThe research team of the Semiconductor Division of Hon Hai Research Institute, together with the research teams of National Taiwan University and King Abdullah University of Science and Technology in Saudi Arabia, has successfully made breakthroughs in multi-wavelength μ -LED technology to achieve high-speed visible light communication and optical interconnection between chips.
SEMI, Purdue University Launch AI and Data Analysis Online Courses
05/22/2025 | SEMISEMI, the industry association serving the global semiconductor and electronics design and manufacturing supply chain, today announced it has partnered with Purdue University to launch an online course series focused on artificial intelligence (AI) and data analysis techniques for the semiconductor industry.