Spinning Electrons Could Lead to New Electronics
August 8, 2016 | University of ManchesterEstimated reading time: 1 minute

Among the unusual properties of graphene, one of the most exciting and least understood is the additional degree of freedom experienced by electrons.
It is called the pseudospin and it determines the probability to find electrons on neighbouring carbon atoms. The possibility to control this degree of freedom would allow for new types of experiments, but potentially also enable to use it for electronic applications.
Now, writing in Science, Manchester physicists demonstrate how electrons with well-controlled pseudospin can be injected into graphene. The scientists used two layers of graphene, rotated by a small angle with respect to each other and separated by a thin layer of boron nitride, another two-dimensional material and an excellent insulator.
Applying strong magnetic field parallel to the graphene layers, the pseudospin state of the tunnelling electrons can be chosen.
Graphene was first isolated from graphite in at The University of Manchester in 2004. Its range of superlative properties, including fantastic strength, conductivity, flexibility and transparency, has paved the way for applications ranging from water filtration to bendable smartphones; from rust-proof coatings to anti-cancer drug delivery systems.
Combining graphene with other materials, which individually have excellent characteristics complimentary to the extraordinary properties of graphene, has resulted in exciting scientific developments and could produce applications as yet beyond our imagination.
Sir Kostya Novoselov, who along with colleague Sir Andre Geim was awarded the Nobel prize for Physics for their ground-breaking experiments on graphene, believes the findings could have a significant impact.
He said: “Our experiments offer an unprecedented control over the quantum state of the electrons in graphene”.
Co-author Professor Vladimir Fal’ko added: “We hope that the opportunity to control the pseudospin and chirality of electrons in graphene will expand the range of quantum phenomena studied in this remarkable material”.
One of the lead authors, Dr Artem Mishchenko, is very optimistic. He said: “Who knows, maybe one day we will see chirotronics, alongside with spintronics, valleytronics and electronics”.
The research was also carried out by scientists from Laboratoire National des Champs Magnėtiques Intenses in Grenoble, France; Radboud University, Nijmegen, Netherlands; Institute of Microelectronics Technology and High Purity Materials, Chernogolovka, Russia; National University of Science and Technology, Moscow, Russia and The University of Nottingham.
Suggested Items
SEL Receives Purdue Senior Design Partner of the Year Award
05/01/2025 | Schweitzer Engineering LaboratoriesSchweitzer Engineering Laboratories (SEL) has been awarded the Senior Design Partner of the Year Award from the Edwardson School of Industrial Engineering at Purdue University.
IQM to Deploy Poland’s First Superconducting Quantum Computer
04/25/2025 | BUSINESS WIREThe first quantum computer in Poland developed by IQM Quantum Computers, a global leader in superconducting quantum computers, will be operational at the Wrocław University of Science and Technology (WUST) in the second quarter of this year.
Hon Hai Research Institute's Fourth-generation Semiconductor Application Reaches a New Milestone
04/21/2025 | FoxconnHon Hai Research Institute ( HHRI ) Semiconductor Research Institute has conducted cross-border cooperation with Yang Ming Chiao Tung University and the University of Texas at Austin to invest in forward-looking research on fourth-generation semiconductors.
University of Arizona Pioneering Technical Education Beyond Semiconductors
04/18/2025 | Marcy LaRont, PCB007 MagazineWhile many universities struggle to keep their curriculum up to date with the evolving needs of the electronics industry, the University of Arizona stands head and shoulders above the others. Its Center for Semiconductor Manufacturing incorporates five of the colleges at UA and emphasizes an interdisciplinary approach to prepare students for diverse careers in technology and manufacturing.
Tata Electronics Appoints KC Ang as President and Head of Tata Semiconductor Manufacturing
04/03/2025 | PRNewswireTata Electronics Private Limited, a pioneer in the Indian electronics and semiconductor manufacturing sector, announced the appointment of KC Ang as President and Head of its Foundry business - Tata Semiconductor Manufacturing Private Limited reporting to Dr. Randhir Thakur, CEO & MD of Tata Electronics.