A Day with Pete (Starkey)
August 9, 2016 | Barry Matties, I-Connect007Estimated reading time: 17 minutes
Starkey: From an industry that was 400+ strong in the UK, we now have an industry that, if you count very hard, you may find 30 shops. You may find a couple of hundred shops in Germany. That's really the way it's gone. The only people remaining, really, are the people that were the forward-looking ones, that didn't take the same complacent view as the majority and continued their investment, their development and their specialization. They're specialist companies for the most part, and they're servicing the requirements of industries that, for various reasons, are partly security and partly confidence in quality and service, and prefer to trade with local established credible suppliers than to bring in their stuff from offshore.
Matties: Yeah, I think that is certainly something we're seeing in America as well. From a technology point of view, has the technology progressed as fast or to the level that you might have thought it would have by now?
Starkey: Quite honestly, I think the only significant change in the technology has been the era of HDI, the era of the microvia. In my manufacturing days, all of our through-holes, blind holes, and buried holes were produced by mechanical drilling. It was the sort of revolution that happened during the '90s, and it started off in Japan. I can recall going on several technology missions sponsored by our Department of Trade and Industry to discover the magical land of ”Microvia,” which was supposedly a small island close to Japan.
Again, a lot of that technology was OEM driven rather than free market driven. I think during my existence in the UK industry the big changeover was from the OEM shop, because that's where the technology was, to the free market. For the OEM shop, everyone could write his own set of rules and his own set of standards, but it tended to be quite an expensive operation. So guys set up independently and provided a manufacturing service for these OEMs, and they could do it more cost effectively. As a consequence of that, there had to be standardization so that they could offer the same product, or the same manufacturing service to the same standards, to the general market. The industry had to start adopting standards, and part of my early responsibility was to establish capability approvals to, particularly at that time, British standards—later on to European and to world-accepted standards. That was a change which happened early in my years in the industry.
The technology in the first generation, our accepted plated through-hole and multilayer technology, came out of the OEM shops. The microvia technology came principally out of the Japanese OEM shops. The major technology change has been laser drilling rather than mechanical drilling.
Matties: Now I just saw, I think it was Schmoll, drilling sizes half the dimension of a strand of hair. Was that Schmoll?
Starkey: Yeah, it was. It was part of Michael Weinhold's EIPC conference presentation, because Michael has a very good network in the Far East and has spent a lot of time in Japan and always makes a point of attending the JPCA show. We used to mechanically drill holes at 0.6, 0.5, 0.4, 0.3 millimeter, and 0.1 millimeter was about the limit. Then that sort of technology was overshadowed by the laser drilling technology. Laser drilling sort of blasts holes, whereas mechanical drilling accurately cuts the material away from where you want it. He saw examples of mechanical drilling, and mechanical drill bits—it's one thing having the machine, it's the other thing having the tools to use in it—at 30 microns and trending towards 20 microns, which again opens up a new generation of technology.
Matties: That's the thing, there's the board technology, but there's also the actual manufacturing technology, the equipment that we use to produce boards, and now we're getting into the era of inkjets and spray coatings and such. Has that manufacturing process changed the way that you thought it would by now?
Starkey: Quite honestly, designers tended to operate in a closed environment and they just presumed an awful lot of things about the manufacturing process. They'd read a material data sheet, they would set themselves some design rules, and away they'd go, without really any great depth of understanding about the poor guy on the other end of the manufacturing process. Again, from the next stage down the line, the PCB fabricator didn't normally have an awful lot of idea of what happened in the assembly shop, and the assembler didn't have a great appreciation of what necessarily were the limitations of the materials or the finishes that were industry standard on PCBs. Several of us have made a lot of effort over the years to try to encourage the designer to understand the fabrication process.
I spent many, many years manufacturing jobs that probably, if you looked at actual materials capability and process capability, should not have been manufacturable. I think my background in materials and processes and technical service helped. For manufacturing technology, a lot of the metal finishing processes have shown incremental improvements, but no fundamental improvement.
For imaging technology, the original printed circuit was screen printed and then photoresists were introduced, but these were liquid photoresists, which did a very good job but were very messy to use. Then DuPont invented the concept of dry film photoresist, which really revolutionized it, because it meant that with a very straightforward application process you could do very precise imaging with a dry film resist. Dry film has, again, incremental improvements. Liquid resists were reintroduced and liquid resists have been very successful for fine line innerlayer work.Page 2 of 3
Suggested Items
NEOTech Significantly Improves Wire Bond Pull Test Process
11/25/2024 | NEOTechNEOTech, a leading provider of electronic manufacturing services (EMS), design engineering, and supply chain solutions in the high-tech industrial, medical device, and aerospace/defense markets, proudly announces a major advancement in its wire bond pull testing process, reducing manufacturing cycle time by more than 60% while maintaining industry-leading production yields of over 99.99%.
HANZA Wins New Customer in Germany
11/25/2024 | HANZAHANZA AB, listed on Nasdaq Stockholm, continues to secure new business, and has entered a manufacturing partnership with a leading German company specializing in advanced measurement equipment for mechanical components.
Standard of Excellence: Hiring for Quality Positions in Manufacturing, Engineering, and Management
11/25/2024 | Anaya Vardya -- Column: Standard of ExcellenceIn continuing my series on finding, signing, and keeping good people for your company, this month we discuss hiring good people for your quality department. Even when hiring was easier, hiring for the quality department has always been especially challenging. It takes a special kind of person: someone with attention to detail, someone ready to stand for his or her convictions, and someone who can stand up under pressure when the company needs to ship product and the quality manager refuses to because it is not up to par. The quality department is the very soul of any manufacturing company.
China Overtakes Germany and Japan in Robot Density
11/22/2024 | IFRChina's adoption of robots continues at a rapid pace: The country has surpassed Germany and Japan in the ratio of robots to factory workers, taking third place in the world in 2023.
PCB Design Software Market Expected to Hit $9.2B by 2031
11/21/2024 | openPRThis report provides an overview of the PCB design software market, detailing key market drivers, challenges, technological advancements, regional dynamics, and future trends. With a projected compound annual growth rate (CAGR) of 13.4% from 2024 to 2031, the market is expected to grow from USD 3.9 billion in 2024 to USD 9.2 billion by 2031.