Making a Solar Energy Conversion Breakthrough With Help From a Ferroelectrics Pioneer
August 11, 2016 | Drexel UniversityEstimated reading time: 6 minutes

Designers of solar cells may soon be setting their sights higher, as a discovery by a team of researchers has revealed a class of materials that could be better at converting sunlight into energy than those currently being used in solar arrays. Their research shows how a material can be used to extract power from a small portion of the sunlight spectrum with a conversion efficiency that is above its theoretical maximum — a value called the Shockley-Queisser limit. This finding, which could lead to more power-efficient solar cells, was seeded in a near-half-century old discovery by Russian physicist Vladimir M. Fridkin, PhD, a visiting professor of physics at Drexel University, who is also known as one of the innovators behind the photocopier.
The team, which includes scientists from Drexel University, the Shubnikov Institute of Crystallography of the Russian Academy of Sciences, the University of Pennsylvania and the U. S. Naval Research Laboratory recently published its findings in the journal Nature Photonics. Their article “Power conversion efficiency exceeding the Shockley-Queisser limit in a ferroelectric insulator,” explains how they were able to use a barium titanate crystal to convert sunlight into electric power much more efficiently than the Shockley-Queisser limit would dictate for a material that absorbs almost no light in the visible spectrum — only ultraviolet.
A phenomenon that is the foundation for the new findings was observed by Fridkin, who is one of the principal co-authors of the paper, some 47 years ago, when he discovered a physical mechanism for converting light into electrical power — one that differs from the method currently employed in solar cells. The mechanism relies on collecting “hot” electrons, those that carry additional energy in a photovoltaic material when excited by sunlight, before they lose their energy. And though it has received relatively little attention until recently, the so-called “bulk photovoltaic effect,” might now be the key to revolutionizing our use of solar energy.
The Limits of Solar Energy
Solar energy conversion has been limited thus far due to solar cell design and electrochemical characteristics inherent to the materials used to make them.
“In a conventional solar cell — made with a semiconductor — absorption of sunlight occurs at an interface between two regions, one containing an excess of negative-charge carriers, called electrons, and the other containing an excess of positive-charge carriers, called holes,” said Alessia Polemi, PhD, a research assistant professor in the Department of Materials Science and Engineering in Drexel’s College of Engineering and one of the co-authors of the paper.
In order to generate electron-hole pairs at the interface, which is necessary to have an electric current, the sunlight’s photons must excite the electrons to a level of energy that enables them to vacate the valence band and move into the conduction band — the difference in energy levels between these two bands is referred to as the “band gap.” This means that in photovoltaic materials, not all of the available solar spectrum can be converted into electrical power. And for sunlight photon energies that are higher than the band gap, the excited electrons will lose it excess energy as heat, rather than converting it to electric current. This process further reduces the amount of power can be extracted from a solar cell.
“The light-induced carriers generate a voltage, and their flow constitutes a current. Practical solar cells produce power, which is the product of current and voltage,” Polemi said. “This voltage, and therefore the power that can be obtained, is also limited by the band gap.”
But, as Fridkin discovered in 1969 — and the team validates with this research — this limitation is not universal, which means solar cells can be improved.
Page 1 of 2
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Curing and Verification in PCB Shadow Areas
09/17/2025 | Doug Katze, DymaxDesign engineers know a simple truth that often complicates electronics manufacturing: Light doesn’t go around corners. In densely populated PCBs, adhesives and coatings often fail to fully cure in shadowed regions created by tall ICs, connectors, relays, and tight housings.
Marcy’s Musings: Advancing the Advanced Materials Discussion
09/17/2025 | Marcy LaRont -- Column: Marcy's MusingsAs the industry’s most trusted global source of original content about the electronics supply chain, we continually ask you about your concerns, what you care about, and what you most want to learn about. Your responses are insightful and valuable. Thank you for caring enough to provide useful feedback and engage in dialogue.
September 2025 PCB007 Magazine: The Future of Advanced Materials
09/16/2025 | I-Connect007 Editorial TeamMoore’s Law is no more, and the advanced material solutions being developed to grapple with this reality are surprising, stunning, and perhaps a bit daunting. Buckle up for a dive into advanced materials and a glimpse into the next chapters of electronics manufacturing.
I-Connect007 Launches Advanced Electronics Packaging Digest
09/15/2025 | I-Connect007I-Connect007 is pleased to announce the launch of Advanced Electronics Packaging Digest (AEPD), a new monthly digital newsletter dedicated to one of the most critical and rapidly evolving areas of electronics manufacturing: advanced packaging at the interconnect level.
Panasonic Industry will Double the Production Capacity of MEGTRON Multi-layer Circuit Board Materials Over the Next Five Years
09/15/2025 | Panasonic Industry Co., Ltd.Panasonic Industry Co., Ltd., a Panasonic Group company, announced plans for a major expansion of its global production capacity for MEGTRON multi-layer circuit board materials today. The company plans to double its production over the next five years to meet growing demand in the AI server and ICT infrastructure markets.