Irish Reseachers Have Developed a Simpler Process to Produce Germanium-tin Nanowires
August 22, 2016 | AMBEREstimated reading time: 1 minute

Researchers in AMBER, the Science Foundation Ireland funded materials science centre, hosted in Trinity College Dublin, have created a simpler process to produce germanium-tin nanowires (germanium is a semiconductor with superior electronic properties compared with silicon). The research breakthrough recently published in the prestigious scientific journal Nature Communications describes this new process as essential in potentially enabling the production of an entirely new generation of faster, smaller and greener electronic devices.
The research team at AMBER have successfully fabricated highly crystalline, germanium–tin nanowires. The nanowires were grown from a simple, cheap and scalable gas-phase process employing a unique combination of chemical reactions developed by the AMBER team in Ireland. Importantly, the nanowires produced are expected to lead to electronic devices that are up to 125 times more power efficient than conventional devices due to the unique electrical properties of germanium-tin, ultimately resulting in smarter and greener electronic gadgets, such as mobile phones, tablets, sensors and smart watches.
Professor Justin Holmes, Investigator at AMBER and Professor of Nanochemistry at University College Cork, said: “This is a significant advancement in the field of nanostructure research and opens up new possibilities for the development of future technologies. Current mobile devices based on existing technology are energy inefficient, due to high power consumption and the dissipation of a large amount of heat, leading to wasteful battery usage or the requirement for elaborate cooling systems. In the field of electronics and optics, manipulation of nanoscale structures should lead to more energy efficient phones and computers.”
Nanowires are similar to normal electrical wires but are extremely small, typically thinner than one thousandth of the thickness of a human hair. Just like normal wires, nanowires can be made from a variety of different materials, including metals such as copper and gold or semiconductors such as silicon and germanium.
Nanowires often exhibit unique optical, electrical and even mechanical properties that are not found in bulk materials, making them very attractive for a range of applications that include chemical and biological sensors, computer circuitry and light emitting diodes (LEDs). Notably, increasing the number of nanowire switches (or transistors) on a silicon chip enables the production of faster, smaller and more mobile electronic devices.
The AMBER team are currently in collaboration with industrial partners to demonstrate the commercial viability of nanowire-based energy efficient electronic and optical devices within a 5-year timeframe.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.
Trouble in Your Tank: Minimizing Small-via Defects for High-reliability PCBs
08/27/2025 | Michael Carano -- Column: Trouble in Your TankTo quote the comedian Stephen Wright, “If at first you don’t succeed, then skydiving is not for you.” That can be the battle cry when you find that only small-diameter vias are exhibiting voids. Why are small holes more prone to voids than larger vias when processed through electroless copper? There are several reasons.
The Government Circuit: Navigating New Trade Headwinds and New Partnerships
08/25/2025 | Chris Mitchell -- Column: The Government CircuitAs global trade winds continue to howl, the electronics manufacturing industry finds itself at a critical juncture. After months of warnings, the U.S. Government has implemented a broad array of tariff increases, with fresh duties hitting copper-based products, semiconductors, and imports from many nations. On the positive side, tentative trade agreements with Europe, China, Japan, and other nations are providing at least some clarity and counterbalance.