Irish Reseachers Have Developed a Simpler Process to Produce Germanium-tin Nanowires
August 22, 2016 | AMBEREstimated reading time: 1 minute

Researchers in AMBER, the Science Foundation Ireland funded materials science centre, hosted in Trinity College Dublin, have created a simpler process to produce germanium-tin nanowires (germanium is a semiconductor with superior electronic properties compared with silicon). The research breakthrough recently published in the prestigious scientific journal Nature Communications describes this new process as essential in potentially enabling the production of an entirely new generation of faster, smaller and greener electronic devices.
The research team at AMBER have successfully fabricated highly crystalline, germanium–tin nanowires. The nanowires were grown from a simple, cheap and scalable gas-phase process employing a unique combination of chemical reactions developed by the AMBER team in Ireland. Importantly, the nanowires produced are expected to lead to electronic devices that are up to 125 times more power efficient than conventional devices due to the unique electrical properties of germanium-tin, ultimately resulting in smarter and greener electronic gadgets, such as mobile phones, tablets, sensors and smart watches.
Professor Justin Holmes, Investigator at AMBER and Professor of Nanochemistry at University College Cork, said: “This is a significant advancement in the field of nanostructure research and opens up new possibilities for the development of future technologies. Current mobile devices based on existing technology are energy inefficient, due to high power consumption and the dissipation of a large amount of heat, leading to wasteful battery usage or the requirement for elaborate cooling systems. In the field of electronics and optics, manipulation of nanoscale structures should lead to more energy efficient phones and computers.”
Nanowires are similar to normal electrical wires but are extremely small, typically thinner than one thousandth of the thickness of a human hair. Just like normal wires, nanowires can be made from a variety of different materials, including metals such as copper and gold or semiconductors such as silicon and germanium.
Nanowires often exhibit unique optical, electrical and even mechanical properties that are not found in bulk materials, making them very attractive for a range of applications that include chemical and biological sensors, computer circuitry and light emitting diodes (LEDs). Notably, increasing the number of nanowire switches (or transistors) on a silicon chip enables the production of faster, smaller and more mobile electronic devices.
The AMBER team are currently in collaboration with industrial partners to demonstrate the commercial viability of nanowire-based energy efficient electronic and optical devices within a 5-year timeframe.
Suggested Items
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
07/18/2025 | Nolan Johnson, I-Connect007It may be the middle of the summer, but the news doesn’t quit, and there’s plenty to talk about this week, whether you’re talking technical or on a global scale. When I have to choose six items instead of my regular five, you know it’s good. I start by highlighting my interview with Martyn Gaudion on his latest book, share some concerning tariff news, follow that up with some promising (and not-so-promising) investments, and feature a paper from last January’s inaugural Pan-European Design Conference.
Elephantech Launches World’s Smallest-Class Copper Nanofiller
07/17/2025 | ElephantechJapanese deep-tech startup Elephantech has launched its cutting-edge 15 nm class copper nanofiller – the smallest class available globally. This breakthrough makes Elephantech one of the first companies in the world to provide such advanced material for commercial use.
Copper Price Surge Raises Alarms for Electronics
07/15/2025 | Global Electronics Association Advocacy and Government Relations TeamThe copper market is experiencing major turbulence in the wake of U.S. President Donald Trump’s announcement of a 50% tariff on imported copper effective Aug. 1. Recent news reports, including from the New York Times, sent U.S. copper futures soaring to record highs, climbing nearly 13% in a single day as manufacturers braced for supply shocks and surging costs.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
07/11/2025 | Andy Shaughnessy, Design007 MagazineThis week, we have quite a variety of news items and articles for you. News continues to stream out of Washington, D.C., with tariffs rearing their controversial head again. Because these tariffs are targeted at overseas copper manufacturers, this news has a direct effect on our industry.I-Connect007 Editor’s Choice: Five Must-Reads for the Week
Digital Twin Concept in Copper Electroplating Process Performance
07/11/2025 | Aga Franczak, Robrecht Belis, Elsyca N.V.PCB manufacturing involves transforming a design into a physical board while meeting specific requirements. Understanding these design specifications is crucial, as they directly impact the PCB's fabrication process, performance, and yield rate. One key design specification is copper thieving—the addition of “dummy” pads across the surface that are plated along with the features designed on the outer layers. The purpose of the process is to provide a uniform distribution of copper across the outer layers to make the plating current density and plating in the holes more uniform.