Measuring Tiny Forces with Light
August 25, 2016 | NISTEstimated reading time: 6 minutes

Photons are bizarre: They have no mass, but they do have momentum. And that allows researchers to do counterintuitive things with photons, such as using light to push matter around.
Recently, a group of scientists led by chemist Gordon Shaw at NIST’s Physical Measurement Laboratory (PML) has been taking advantage of this property to develop devices that can create and measure minute forces, an area traditionally underserved by the metrology community.
“There are very few references for these small forces,” Shaw says. “This is a way to try and get at those.”
When Shaw says “small,” he means small. The official SI unit of force is the newton. One newton is equivalent to about the weight of an average-sized apple. The experiments the group is working on can measure forces that are tiny fractions of a newton – from micronewtons (10 -6, millionths of a newton) all the way down to 15 femtonewtons (10 -15, a million billionth of a newton), at the level of atomic interactions. A piconewton (10 -12) “will stretch a DNA molecule out,” Shaw says.
The PML team is currently developing two types of force-measurement devices that use laser light to reliably create small forces. The first is a chip-sized sensor that can use micro- to milliwatt- power light. The second is a tabletop contraption designed for laser light of about 1 watt, but which could potentially be developed for light of tens of kilowatts of power.
Eventual commercial uses could include sensors that use laser light as a built-in reference, allowing scientists to ensure their devices really are measuring force correctly. But the potential applications go beyond force, into cheap field-portable balances for near-instant measurement of masses of a milligram or less, and into compact laser power meters that make their measurements in real time.
A Chip-Sized Balance
The smaller of the two types of force meter being developed by the team is a chip-sized sensor made of fused quartz. It consists of a small cantilever – a miniature diving board – less than 1 cm in length. The bigger the force, the more the cantilever moves. A built-in interferometer acts as a motion sensor. (For a demonstration, see animation above.)
Chip-sized small force sensor
PML researcher Gordon Shaw holding a prototype for the chip-sized small-force meter. The cantilever is near the intersection of the two rectangles in the center of the glass cylinder.
Physically pushing the diving board is one way to apply a force for measurement. But researchers also need to gauge the sensitivity of their sensor. And the best way to measure sensitivity is to apply a well-known force to the cantilever and see how the interferometer interprets it.
To manipulate the cantilever with light, they fit it with a highly reflective, gold-coated surface that can reflect light shining on it from an optical fiber. When this light hits the gold surface, it transfers its momentum to the cantilever, which begins to vibrate.
“If you think of a tuning fork, you can hit it and it will ring at a particular frequency or a particular tone. This does the same thing,” Shaw explains.
They found that if you reflect laser light off the surface, there’s a relatively straightforward way to calculate what the force should be based on the laser power. The higher the power, the more photons there are, and the larger the force that’s generated.
Furthermore, since the cantilever’s resonant frequency changes almost instantly if a mass is placed on it, the mechanism could also be used as a very sensitive balance – particularly for objects that are extremely valuable or dangerous. For example, jewelers could use it as a less expensive alternative for weighing and pricing gemstones. It could even be used potentially as a field-portable, disposable tool for measuring samples of hazardous materials.
Variations on this design could also be used to improve calibrations of atomic force microscopes* and even to measure laser power. Unlike the current “gold standard” method of measuring laser power – a cryogenic radiometer – a chip-based laser power meter like this can be used at room temperature and in real time.
“Most laser power meters work by absorbing the light. After the light goes to the laser power meter, it’s gone,” Shaw says. “With an approach like this, it reflects and you can still use it.”
Page 1 of 2
Suggested Items
Elephantech: For a Greener Tomorrow
04/16/2025 | Marcy LaRont, PCB007 MagazineNobuhiko Okamoto is the global sales and marketing manager for Elephantech Inc., a Japanese startup with a vision to make electronics more sustainable. The company is developing a metal inkjet technology that can print directly on the substrate and then give it a copper thickness by plating. In this interview, he discusses this novel technology's environmental advantages, as well as its potential benefits for the PCB manufacturing and semiconductor packaging segments.
Trouble in Your Tank: Organic Addition Agents in Electrolytic Copper Plating
04/15/2025 | Michael Carano -- Column: Trouble in Your TankThere are numerous factors at play in the science of electroplating or, as most often called, electrolytic plating. One critical element is the use of organic addition agents and their role in copper plating. The function and use of these chemical compounds will be explored in more detail.
IDTechEx Highlights Recyclable Materials for PCBs
04/10/2025 | IDTechExConventional printed circuit board (PCB) manufacturing is wasteful, harmful to the environment and energy intensive. This can be mitigated by the implementation of new recyclable materials and technologies, which have the potential to revolutionize electronics manufacturing.
Connect the Dots: Stop Killing Your Yield—The Hidden Cost of Design Oversights
04/03/2025 | Matt Stevenson -- Column: Connect the DotsI’ve been in this industry long enough to recognize red flags in PCB designs. When designers send over PCBs that look great on the computer screen but have hidden flaws, it can lead to manufacturing problems. I have seen this happen too often: manufacturing delays, yield losses, and designers asking, “Why didn’t anyone tell me sooner?” Here’s the thing: Minor design improvements can greatly impact manufacturing yield, and design oversights can lead to expensive bottlenecks. Here’s how to find the hidden flaws in a design and avoid disaster.
Real Time with... IPC APEX EXPO 2025: Tariffs and Supply Chains in U.S. Electronics Manufacturing
04/01/2025 | Real Time with...IPC APEX EXPOChris Mitchell, VP of Global Government Relations for IPC, discusses IPC's concerns about tariffs on copper and their impact on U.S. electronics manufacturing. He emphasizes the complexity of supply chains and the need for policymakers to understand their effects.