New Single-photon Microwave Source Developed
August 26, 2016 | National Physical LaboratoryEstimated reading time: 1 minute

A collaboration including researchers at the National Physical Laboratory (NPL) has developed a tuneable, high-efficiency, single-photon microwave source. The technology has great potential for applications in quantum computing and quantum information technology, as well as in studying the fundamental reactions between light and matter in quantum circuits.
Circuits which produce single photons are a vital component in quantum computers. They usually consist of a quantum bit or 'qubit', coupled to a resonance circuit. The resonant circuit limits the photon output to specific frequencies depending on the design of the circuit.
This limitation means that researchers have to rebuild them each time a different frequency is required, which is time and labour intensive.
A team of researchers at NPL, in collaboration with RIKEN in Japan, the Moscow Institute of Physics and Technology and Royal Holloway, University of London, has solved this problem by creating a new device which is tuneable and is able to produce single photons over a wide range of frequencies on demand.
The technology developed by the consortium uses a super-cooled qubit that bridges two open ends of a broken transmission line. One end, through which microwave photons are outputted, is strongly coupled to the qubit. The other end of the transmission line is weakly coupled and is used as the input port to trigger the emission of a single photon from the qubit. An input pulse is used to excite the qubit into a higher energy-state similar to an electron orbiting an atom. After being excited, the qubit immediately relaxes, producing a single photon. The qubit energy can be tuned, thus altering the frequency of the output photons. The demonstrated device has an efficiency of above 80%, which is highly competitive when compared with other sources.
In addition to being a necessary part of prospective quantum computers, single photon sources can be used to shed light on the fundamental interactions between light and matter, which is vital for our understanding of quantum physics and the development of quantum and solid-state technologies. The team is hoping to build on its new single-photon source to develop the field of quantum information even further.
Suggested Items
Microchip Enters into Partnership Agreement with Delta Electronics on Silicon Carbide Solutions
07/18/2025 | Globe NewswireThe growth of artificial intelligence (AI) and the electrification of everything are driving an ever-increasing demand for higher levels of power efficiency and reliability.
ViTrox’s HITS 5.0 Empowers Global Partners with Innovative Solutions and Stronger Bonds
07/16/2025 | ViTroxViTrox, strives to be the World’s Most Trusted Technology Company, proudly announces the successful conclusion of its fifth edition of High Impact Training for Sales (HITS 5.0), held from 23rd to 27th June 2025 at ViTrox Campus 2.0 and 3.0, located in Batu Kawan Industrial Park, Penang, Malaysia.
Global Citizenship: The Global Push for Digital Inclusion
07/16/2025 | Tom Yang -- Column: Global CitizenshipIt can be too easy to take the technology at our fingertips for granted: high-speed internet, cloud-based collaboration, and instant video calls across continents. Yet, for billions of people, access to these digital tools is a distant dream. As a global community, we must ensure that technology is available to all. Here is how technology is bridging physical, economic, and educational gaps in underserved regions and profoundly reshaping lives.
Microchip Expands Space-Qualified FPGA Portfolio with New RT PolarFire® Device Qualifications and SoC Availability
07/10/2025 | MicrochipContinuing to support the evolving needs of space system developers, Microchip Technology has announced two new milestones for its Radiation-Tolerant (RT) PolarFire® technology: MIL-STD-883 Class B and QML Class Q qualification of the RT PolarFire RTPF500ZT FPGA and availability of engineering samples for the RT PolarFire System-on-Chip (SoC) FPGA.
Infineon Advances on 300-millimeter GaN Manufacturing Roadmap as Leading Integrated Device Manufacturer (IDM)
07/10/2025 | InfineonAs the demand for gallium nitride (GaN) semiconductors continues to grow, Infineon Technologies AG is poised to capitalize on this trend and solidify its position as a leading Integrated Device Manufacturer (IDM) in the GaN market.