Standing Still May Help Improve Antennas That Scan in All Directions
September 1, 2016 | University of Wisconsin-MadisonEstimated reading time: 3 minutes

Antennas often need to trace circles in the sky. For example, radar arrays atop air-traffic control towers rotate to sweep signals in all directions. But spinning large objects nonstop takes a lot of time and mechanical energy. So scanning from a stationary position could speed up long-range detection and communications.
Now, with support from a $1.1 million grant from the U.S. Office of Naval Research, University of Wisconsin–Madison electrical engineers are working out a new strategy to create antennas that spin their beams in circles while the devices stand still.
“Our approach doesn’t depend on exotic materials that bend the laws of physics,” says Nader Behdad, principal investigator on the project and UW–Madison professor of electrical and computer engineering. “We’ve found a practical way to achieve beam-steering that the antennas field has largely overlooked for many years.”
Engineers have long searched for ways to rapidly reorient radar beams, but progress has historically been slow, and existing technology is still too expensive for widespread use. Still, researchers persevere because scanning the sky can make the difference between life and death.
“In defense situations, you need to detect incoming objects or see where you are going very quickly,” says John Booske, another UW–Madison electrical and computer engineering professor and Behdad’s co-principal investigator. “The ability of a mechanical rig to move a big, heavy parabolic dish back and forth limits how quickly you can respond to potential threats.”
One alternative to mechanical motion is using flat planes made up of miniature transmitters that each emit fractions of an overall signal — every fraction varied so that it all adds up to a single linear beam. These antennas, called phase-varied arrays, can also modulate the direction of that overall beam by altering the electronic properties of each individual signal source.
However, packing multiple small-scale antennas into one surface adds up to costly and colossal devices overall, limiting their usefulness.Rather than building a phased array from numerous individual antennas, the team instead plans to create special reflective surfaces that achieve the same effect, but only rely on one single signal source.
Amin Momeni investigates the three-dimensional radio signal emanating from a prototype antenna. The device is able to send scanning beams in multiple directions from a stationary position. Nader Behdad (standing, left), Seyed Mohamad, and Hasan Abadi observe. Photo: Stephanie Precourt
“Up until this idea there was practically no way to meet the almost impossible specification of the ideal solution,” says Booske.
Much like the way in which the curved reflector in a car’s headlamp concentrates light emanating spherically outward from a single bulb into a forward beam, these flat arrays focus microwave signals into directed columns by altering the electronic properties of individual elements on their surfaces. But unlike mirrored dishes, these devices can vary the direction of the reflected beams by tuning individual elements on the surface.
Achieving that tuning, however, is no easy task. Behdad tried numerous complicated approaches to modulate every component before he and Booske realized that they did not need to control each element one by one. Instead they harnessed small-scale mechanical motion within the entire antenna itself by making tiny adjustments to one large component, called the ground plane, that sits below the entire structure.
“Luckily for us, in order to do beam-steering, we really don’t need to individually tune each element,” says Behdad. “All we need to do is create a gradient and we can do that by simply tilting the ground plane on one corner a little bit down and the other a little bit up.”
Small tilting motions inside an overall flat plane require much less time and mechanical force than spinning a large reflector dish. To test the feasibility of this approach, the group made a low-cost prototype, which successfully provided proof of concept of electromagnetic principles. Now, the team is working to identify appropriate materials and techniques to improve this concept, making it suitable for real-world applications.
Suggested Items
Beyond Design: Refining Design Constraints
07/17/2025 | Barry Olney -- Column: Beyond DesignBefore starting any project, it is crucial to develop a thorough plan that encompasses all essential requirements. This ensures that the final product not only aligns with the design concept but is also manufacturable, reliable, and meets performance expectations. High-speed PCB design requires us to not only push technological boundaries but also consider various factors related to higher frequencies, faster transition times, and increased bandwidths during the design process.
Why I Finally Embraced Autorouting
07/03/2025 | Stephen V. Chavez, Siemens EDAHere is a common misconception held by those who don’t fully understand the PCB layout process or how to wield today’s high-level EDA tools: "All I need to do is push the autorouter button, let the computer route all the signal traces, and get the layout 100% routed. It’s a no-brainer. Anyone can do it. It should take less than a few hours.”
Reflections and Priorities: An Update to I-Connect007 Readers
06/24/2025 | Marcy LaRont, I-Connect007The electronics and manufacturing industry is evolving rapidly—with new technologies, deeper global connections, and a growing drive toward sustainability. To reflect these changes and our place in this dynamic space, we’re refreshing our brand.
Microchip Enhances Digital Signal Controller Lineup with Industry-Leading PWM Resolution and ADC Speed
06/21/2025 | MicrochipEvolving security and functional safety demands, coupled with the growing complexity of real-time embedded applications, are driving designers to seek innovative solutions that deliver greater accuracy, improved reliability and compliance with industry standards.
Beyond Design: The Metamorphosis of the PCB Router
06/18/2025 | Barry Olney -- Column: Beyond DesignThe traditional PCB design process is often time-consuming and labor-intensive. Routing a complex PCB layout can consume up to 30% of a designer’s time, and addressing this issue is not straightforward. We have all encountered this scenario: You spend hours setting the constraints and finally hit the Go button, only to be surprised by the lack of visual appeal and the obvious flaws in the result.