Researchers Unveil Ciliated Microbots
September 5, 2016 | UPIEstimated reading time: 1 minute
Scientists in South Korea have created microbots that move and function like single cells. The bots were specifically modeled after the genus of unicellular ciliated protozoans known as Paramecia. Cilia are the hair-like organelles protruding from the bodies of the paramecia. Their whiplash movement propel the protozoans.
Researchers at Daegu Gyeongbuk Institute of Science and Technology modeled the movements of cilia to create a microbot uniquely positioned to navigate viscous fluid environments inside the human body.
The ciliary strokes are made possible by hair-like microstructures controlled by what's called asymmetric magnetic drive technology. The tiny bots feature a core made of a photo-curable polymer material, surrounded by layers of nickel and titanium. A laser was used to carve out the cilia.
Previous fluid-navigating bots have utilized different motions powered by magnetic attraction. The new microbots trigger the whip-like motion of their cilia via magnetic actuation, yielding faster, more efficient movements. In other words, magnetic fields don't pull a bot in a specific direction but trigger a series of motions to propel it forward.
"With precise three-dimensional fabrication techniques and magnetic control technology, my team has developed microrobots mimicking cilia's asymmetric reciprocation movement, which has been never realized so far," Choi Hong-soo, a professor of robotics engineering at DGIST, said in a news release. "We'll continually strive to study and experiment on microrobots that can efficiently move and operate in the human body, so that they can be utilized in chemical and cell delivery as well as in non-invasive surgery."
Suggested Items
Microchip Enters into Partnership Agreement with Delta Electronics on Silicon Carbide Solutions
07/18/2025 | Globe NewswireThe growth of artificial intelligence (AI) and the electrification of everything are driving an ever-increasing demand for higher levels of power efficiency and reliability.
ViTrox’s HITS 5.0 Empowers Global Partners with Innovative Solutions and Stronger Bonds
07/16/2025 | ViTroxViTrox, strives to be the World’s Most Trusted Technology Company, proudly announces the successful conclusion of its fifth edition of High Impact Training for Sales (HITS 5.0), held from 23rd to 27th June 2025 at ViTrox Campus 2.0 and 3.0, located in Batu Kawan Industrial Park, Penang, Malaysia.
Global Citizenship: The Global Push for Digital Inclusion
07/16/2025 | Tom Yang -- Column: Global CitizenshipIt can be too easy to take the technology at our fingertips for granted: high-speed internet, cloud-based collaboration, and instant video calls across continents. Yet, for billions of people, access to these digital tools is a distant dream. As a global community, we must ensure that technology is available to all. Here is how technology is bridging physical, economic, and educational gaps in underserved regions and profoundly reshaping lives.
Microchip Expands Space-Qualified FPGA Portfolio with New RT PolarFire® Device Qualifications and SoC Availability
07/10/2025 | MicrochipContinuing to support the evolving needs of space system developers, Microchip Technology has announced two new milestones for its Radiation-Tolerant (RT) PolarFire® technology: MIL-STD-883 Class B and QML Class Q qualification of the RT PolarFire RTPF500ZT FPGA and availability of engineering samples for the RT PolarFire System-on-Chip (SoC) FPGA.
Infineon Advances on 300-millimeter GaN Manufacturing Roadmap as Leading Integrated Device Manufacturer (IDM)
07/10/2025 | InfineonAs the demand for gallium nitride (GaN) semiconductors continues to grow, Infineon Technologies AG is poised to capitalize on this trend and solidify its position as a leading Integrated Device Manufacturer (IDM) in the GaN market.