Silicon Nanoparticles Instead Of Expensive Semiconductors
September 12, 2016 | Lomonosov Moscow State UniversityEstimated reading time: 2 minutes
Lomonosov MSU physicists found a way to "force" silicon nanoparticles to glow in response to radiation strongly enough to replace expensive semiconductors used in display business. According to Maxim Shcherbakov, researcher at the Department of Quantum Electronics of the Moscow State University and one of the authors of the study, the developed method considerably enhances the efficiency of nanoparticle photoluminescence.
The key term in the problem is photoluminescence -- the process, when materials irradiated by visible or ultraviolet radiation start to respond with their own light, but in a different spectral range. In the study, the material glows red.
In some of the modern displays, semiconductor nanoparticles, or the so-called quantum dots, are used. In quantum dots, electrons behave completely unlike those in the bulk semiconductor, and it has long been known that quantum dots possess excellent luminescent properties. Today, for the purposes of quantum-dot based displays various semiconductors are used, i.e. CdSe, etc. These materials are toxic and expensive, and, therefore, researchers have long been scrutinizing the far cheaper and much more studied silicon. It is also suitable for such use in all respects except one -- silicon nanoparticles vaguely respond to radiation, which is not appealing for optoelectronic industry.
Scientists all over the world were seeking to solve this problem since the beginning of the 1990's, but until now no significant success has been achieved in this direction. The breakthrough idea about how to "tame" silicon originated in Sweden, at the Royal Institute of Technology, Kista. A post-doctoral researcher Sergey Dyakov (a graduate of the MSU Faculty of Physics and the first author of the paper) suggested placing an array of silicon nanoparticles in a matrix with a non-homogeneous dielectric medium and cover it with golden nanostripes.
'The heterogeneity of the environment, as has been previously shown in other experiments, allows to increase the photoluminescence of silicon by several orders of magnitude due to the so-called quantum confinement,' says Maxim Shcherbakov. 'However, the efficiency of the light interaction with nanocrystals still remains insufficient. It has been proposed to enhance the efficiency by using plasmons (quasiparticle appearing from fluctuations of the electron gas in metals -- ed). Plasmon lattice formed by golden nanostripes allow to "hold" light on the nanoscale, and allow a more effective interaction with nanoparticles located nearby, bringing its luminescence to an increase.'
The MSU experiments with samples of "gold-plated" matrix with silicon nanoparticles made in Sweden brilliantly confirmed the theoretical predictions - the UV irradiated silicon for the first time shone bright enough to be used it in practice.
The first author of the paper Sergey Dyakov will present the findings on The 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (September 17-22, Crete). The work was also published in the Physical Review B ("Optical properties of silicon nanocrystals covered by periodic array of gold nanowires").
Suggested Items
DuPont Announces Additional Leaders and Company Name for the Intended Spin-Off of the Electronics Business
04/29/2025 | PRNewswireDuPont announced Qnity Electronics, Inc. as the name of the planned independent Electronics public company that will be created through the intended spin-off of its Electronics business.
2024 Global Semiconductor Materials Market Posts $67.5 Billion in Revenue
04/29/2025 | SEMIGlobal semiconductor materials market revenue increased 3.8% to $67.5 billion in 2024, SEMI, the global industry association representing the electronics design and manufacturing supply chain, reported in its Materials Market Data Subscription (MMDS).
New RF Materials Offer Options for RF Designers
04/29/2025 | Andy Shaughnessy, Design007 MagazineThe RF materials arena has changed quite a bit in the past decade. The newest thermoset laminates boast performance numbers that are almost competitive with PTFE, but without the manufacturability challenges. At IPC APEX EXPO this year, I spoke with Brent Mayfield, business development manager at AGC Multi Material America. Brent walked through some recent innovations in RF materials, advances in resin systems, and the many design trade-offs for RF engineers to consider for each material set.
Discovery Opens Doors for Cheaper and Quicker Battery Manufacturing
04/23/2025 | PNNLThe discovery centers on sublimation, a commonly known process whereby under the right conditions, a solid turns directly into a vapor. Sublimation is what creates the tail of a comet as it flies by the sun. As the comet’s icy shell heats up, the ice instantly becomes vapor, instead of first melting into liquid water.
Real Time with... IPC APEX EXPO 2025: DuPont Electronics Materials and Innovations
04/23/2025 | Real Time with...IPC APEX EXPODuPont is many things to many markets, but DuPont Electronics Materials is, perhaps, a bit out of the DuPont "norm," developing specialized electronic materials that are particularly focused on challenging areas such as flex circuits, high power PCBs and products that must withstand harsh environments. At IPC APEX EXPO, Marcy LaRont sat down with Shannon Dugan from DuPont Electronics Materials to discuss some big news. They are being spun off into an independent entity with a new CEO having just been announced as the show wrapped.