New Laser Provides Ultra-Precise Tool for Scientists Probing the Secrets of the Universe
September 13, 2016 | OSAEstimated reading time: 4 minutes
The team's next goal is to use their laser to measure the first electron transition energy of a positively charged helium atom, called He+.
He+ is the one of the "holy grails" for testing QED, Eikema said, because the properties of the nucleus have been extensively studied, it can be trapped with electromagnetic fields and observed for a very long time, and the QED effects are larger in helium than in hydrogen.
"If it's possible to measure this transition in He+, people will immediately do it, because it’s a very nice, clean transition," he said.
A test of QED in He+ might also help resolve the proton radius problem, a new puzzle gripping the physics community after complementary tests turned up conflicting measurements of the proton's size. The discrepancy could be due to a problem with QED theory, and so a better test would help scientists see whether or not QED theory still holds at this unprecedented new level of precision.
Going from molecular hydrogen to He+ is still an enormous jump, Eikema said, since the wavelength of light required is almost ten times shorter. If all goes according to plan, he estimates the team may have results to report in about 2 years.
"I went to a conference about the proton size problem and explained how we want to measure this transition of He+. Everyone was asking 'When? When? When?' They really want to know," Eikema said.
Sandrine Galtier, a postdoctoral researcher at Vrije University who will present the team's findings at the FiO meeting, says it's exciting how well their new laser system can test the extreme limits of theoretical physics.
"We don't need huge accelerators. With just a tabletop experiment, we can test the Standard Model of physics," she said.
Testimonial
"Our marketing partnership with I-Connect007 is already delivering. Just a day after our press release went live, we received a direct inquiry about our updated products!"
Rachael Temple - AlltematedSuggested Items
Curing and Verification in PCB Shadow Areas
09/17/2025 | Doug Katze, DymaxDesign engineers know a simple truth that often complicates electronics manufacturing: Light doesn’t go around corners. In densely populated PCBs, adhesives and coatings often fail to fully cure in shadowed regions created by tall ICs, connectors, relays, and tight housings.
VIDEOTON EAS's Bulgarian Subsidiary Expands Into Automotive Products
09/15/2025 | VideotonVEAS Bulgaria, engaged in electronics manufacturing, has joined the ranks of VIDEOTON companies authorized to produce automotive products.
Dymax Mexico to Showcase Light-Curing Technologies at SMTA Guadalajara Expo & Tech Forum 2025
09/05/2025 | DymaxDymax, a global manufacturer of rapid light-curing materials and equipment, will participate in SMTA Guadalajara Expo & Tech Forum, taking place September 17-18, 2025, at the Guadalajara Expo Center in Guadalajara, Jalisco, Mexico.
September 2025 SMT007 Magazine: An Eye on India
09/02/2025 | I-Connect007 Editorial TeamIndia is on track to become the world’s fastest-growing major economy within the next two years, and that momentum is already reshaping its electronics manufacturing sector. Whether you work with Indian suppliers or serve Indian customers, chances are the country will become a bigger part of your supply chain in the near future.
AiM Future, Franklin Wireless Sign MOU to Jointly Develop Lightweight AI Model and High-Efficiency 1 TOPS AI SoC Chipset
09/01/2025 | BUSINESS WIREAiM Future, a leading AI semiconductor design company, has signed a Memorandum of Understanding (MOU) with Franklin Wireless Corp., a global leader in intelligent wireless solutions, to jointly develop a lightweight AI model and a high-efficiency 1 TOPS performance AI SoC chipset.