Complex Materials Can Self-organize into Circuits, May Form Basis for Multifunction Chips
September 16, 2016 | ORNLEstimated reading time: 2 minutes

Researchers studying the behavior of nanoscale materials at the Department of Energy’s Oak Ridge National Laboratory have uncovered remarkable behavior that could advance microprocessors beyond today’s silicon-based chips.
The study, featured on the cover of Advanced Electronic Materials ("Chip Architectures: Multimodal Responses of Self-Organized Circuitry in Electronically Phase Separated Materials"), shows that a single crystal complex oxide material, when confined to micro- and nanoscales, can act like a multi-component electrical circuit. This behavior stems from an unusual feature of certain complex oxides called phase separation, in which tiny regions in the material exhibit vastly different electronic and magnetic properties.
It means individual nanoscale regions in complex oxide materials can behave as self-organized circuit elements, which could support new multifunctional types of computing architectures.
An study found that complex oxide materials can self-organize into electrical circuits, which creates the possibility for new types of computer chips
An ORNL study found that complex oxide materials can self-organize into electrical circuits, which creates the possibility for new types of computer chips.
“Within a single piece of material, there are coexisting pockets of different magnetic and/or electronic behaviors,” said ORNL’s Zac Ward, the study’s corresponding author. “What was interesting in this study was that we found we can use those phases to act like circuit elements. The fact that it is possible to also move these elements around offers the intriguing opportunity of creating rewritable circuitry in the material.”
Because the phases respond to both magnetic and electrical fields, the material can be controlled in multiple ways, which creates the possibility for new types of computer chips.
“It’s a new way of thinking about electronics, where you don’t just have electrical fields switching off and on for your bits,” Ward said. “This is not going for raw power. It’s looking to explore completely different approaches towards multifunctional architectures where integration of multiple outside stimuli can be done in a single material.”
As the computing industry looks to move past the limits of silicon-based chips, the ORNL proof-of-principle experiment shows that phase separated materials could be a way beyond the “one-chip-fits-all” approach. Unlike a chip that performs only one role, a multifunctional chip could handle several inputs and outputs that are tailored to the needs of a specific application.
“Typically you would need to link several different components together on a computer board if you wanted access to multiple outside senses,” Ward said. “One big difference in our work is that we show certain complex materials already have these components built in, which may cut down on size and power requirements.”
The researchers demonstrated their approach on a material called LPCMO, but Ward notes that other phase-separated materials have different properties that engineers could tap into.
“The new approach aims to increase performance by developing hardware around intended applications,” he said. “This means that materials and architectures driving supercomputers, desktops, and smart phones, which each have very different needs, would no longer be forced to follow a one-chip-fits-all approach.”
Suggested Items
DuPont Announces Additional Leaders and Company Name for the Intended Spin-Off of the Electronics Business
04/29/2025 | PRNewswireDuPont announced Qnity Electronics, Inc. as the name of the planned independent Electronics public company that will be created through the intended spin-off of its Electronics business.
2024 Global Semiconductor Materials Market Posts $67.5 Billion in Revenue
04/29/2025 | SEMIGlobal semiconductor materials market revenue increased 3.8% to $67.5 billion in 2024, SEMI, the global industry association representing the electronics design and manufacturing supply chain, reported in its Materials Market Data Subscription (MMDS).
New RF Materials Offer Options for RF Designers
04/29/2025 | Andy Shaughnessy, Design007 MagazineThe RF materials arena has changed quite a bit in the past decade. The newest thermoset laminates boast performance numbers that are almost competitive with PTFE, but without the manufacturability challenges. At IPC APEX EXPO this year, I spoke with Brent Mayfield, business development manager at AGC Multi Material America. Brent walked through some recent innovations in RF materials, advances in resin systems, and the many design trade-offs for RF engineers to consider for each material set.
Discovery Opens Doors for Cheaper and Quicker Battery Manufacturing
04/23/2025 | PNNLThe discovery centers on sublimation, a commonly known process whereby under the right conditions, a solid turns directly into a vapor. Sublimation is what creates the tail of a comet as it flies by the sun. As the comet’s icy shell heats up, the ice instantly becomes vapor, instead of first melting into liquid water.
Real Time with... IPC APEX EXPO 2025: DuPont Electronics Materials and Innovations
04/23/2025 | Real Time with...IPC APEX EXPODuPont is many things to many markets, but DuPont Electronics Materials is, perhaps, a bit out of the DuPont "norm," developing specialized electronic materials that are particularly focused on challenging areas such as flex circuits, high power PCBs and products that must withstand harsh environments. At IPC APEX EXPO, Marcy LaRont sat down with Shannon Dugan from DuPont Electronics Materials to discuss some big news. They are being spun off into an independent entity with a new CEO having just been announced as the show wrapped.