Human Brain Project: Pilot Systems for Interactive Supercomputer
September 29, 2016 | Jülich Supercomputing CentreEstimated reading time: 3 minutes
The Jülich Supercomputing Centre has begun operation of two new pilot systems for an interactive supercomputer. The systems – JULIA, created by Cray, and JURON from IBM and NVIDIA – are specifically designed for applications in the neurosciences. The installation and test phase are part of a special procurement for the European Human Brain Project.
The development of an interactive supercomputer for the Human Brain Project (HBP) is making progress. Two consortia have installed their respective proposed solutions at the Jülich Supercomputing Centre (JSC), where Jülich scientists and their colleagues from the HBP will now test how powerful the two systems are and how well they fulfil the desired functions. For this purpose, they are using simulation software such as NEST, which is being developed by Jülich scientists headed by Prof. Markus Diesmann from the Institute of Neuroscience and Medicine (INM-6), together with neuroscientists from all over the world. NEST makes it possible to simulate neuronal networks in the brain. It is planned that in the future the resulting data can be directly analysed and compared to experimental data using the novel supercomputers. In order to achieve this, an international team of scientists headed by Prof. Sonja Grün (INM-6), together with JSC's Simulation Laboratory Neuroscience, are further developing the "Elephant" software. Methods for data and image analysis developed by Jülich researchers headed by Prof. Katrin Amunts from the Institute of Neuroscience and Medicine (INM-1) are also employed. Among other aspects, three-dimensional models of the human brain such as the BigBrain project are to be realized, as well as maps recording the connections between different regions of the brain.
Being able to interactively operate supercomputers for such applications is viewed as a key element for future neuroscience. So far, supercomputers work on tasks largely autonomously. The aim for the future is for scientists to be able to interact with their jobs and to control them interactively. The special challenge is that this requires data to be rapidly analysed and visualized in parallel to the main application. This means that the computers of the future must handle even more data than the enormous amounts that already arise today.
For their concepts, the two consortia are making use of fast computing technologies, not all of which are yet commercially available. The compute nodes communicate via fast network technologies of the latest generation. A unique selling point is the integration of new, non-volatile memory technologies which will, in the future, permit the realization of much larger memory capacities. Both consortia have also integrated graphics processing units (GPU) for visualization purposes.
JULIA and JURON comprise two racks each. For JURON (the name is derived from JUelich and NeuRON), IBM and NVIDIA make use of completely novel Tesla GPUs of the Pascal generation, which are capable of particularly fast communication with each other and with IBM's POWER8 processor on the basis of the NVLink technology. Cray introduced new processor and network technology from Intel in the JULIA supercomputer, whose name is derived from JUelich and gLIA, a type of cell in the nervous system. In order to offer more memory in the system, special Cray DataWarp nodes were integrated, which provide a lot of non-volatile memory. The results of both approaches will be reviewed in early 2017.
The two new pilot systems for an interactive supercomputer, which are installed at Jülich Supercomputing Centre: JULIA, created by Cray, and JURON from IBM and NVIDIA. The central racks represent the storage system both pilot systems can access. Both systems are specifically designed for applications in the neurosciences. The installation and test phase are part of a special procurement for the European Human Brain Project. Copyright: Forschungszentrum Jülich
Pre-Commercial Procurement (PCP)
Both systems serve to evaluate research and development work as part of Pre-Commercial Procurement (PCP). The Human Brain Project chose this special type of procurement, funded by the European Commission, in order to find suitable technology solutions for future high-performance computers designed specifically for neuroscience. The objective is a computer with a peak performance of initially 50 petaflop/s and a memory capacity of 20 petabytes, with which large-scale brain simulations can be interactively visualized and controlled. The procurement process began in April 2014 and is planned to be concluded in 2017. Its aim is to support the development of technologies to be integrated in future products. Forschungszentrum Jülich hopes that in this way, suitable solutions for the development of the HBP High Performance Analytics & Computing Platform will become available on the market.
Testimonial
"In a year when every marketing dollar mattered, I chose to keep I-Connect007 in our 2025 plan. Their commitment to high-quality, insightful content aligns with Koh Young’s values and helps readers navigate a changing industry. "
Brent Fischthal - Koh YoungSuggested Items
Soaring Inference AI Demand Triggers Severe Nearline HDD Shortages; QLC SSD Shipments Poised for Breakout in 2026
09/16/2025 | TrendForceTrendForce’s latest investigations reveal that the massive data volumes generated by AI are straining the global infrastructure of data center storage.
Advanced Packaging-to-Board-Level Integration: Needs and Challenges
09/15/2025 | Devan Iyer and Matt Kelly, Global Electronics AssociationHPC data center markets now demand components with the highest processing and communication rates (low latencies and high bandwidth, often both simultaneously) and highest capacities with extreme requirements for advanced packaging solutions at both the component level and system level. Insatiable demands have been projected for heterogeneous compute, memory, storage, and data communications. Interconnect has become one of the most important pillars of compute for these systems.
Procense Raises $1.5M in Seed Funding to Accelerate AI-Powered Manufacturing
09/11/2025 | BUSINESS WIREProcense, a San Francisco-based industrial automation startup developing cutting-edge AI and remote sensing technologies for process manufacturers has raised $1.5 million in a seed funding round led by Kevin Mahaffey, Business Insider’s #1 seed investor of 2025 and HighSage Ventures, a Boston-based family office that primarily invests in public and private companies in the global software, internet, consumer, and financial technology sectors.
Zuken Announces E3.series 2026 Release for Accelerated Electrical Design and Enhanced Engineering Productivity
09/10/2025 | ZukenZuken reveals details of the upcoming 2026 release of E3.series, which will introduce powerful new features aimed at streamlining electrical and fluid design, enhancing multi-disciplinary collaboration, and boosting engineering productivity.
AI Infrastructure Boosts Global Semiconductor Revenue Growth to 17.6% in 2025
09/09/2025 | IDCAccording to the Worldwide Semiconduct o r Technology and Supply Chain Intelligence service from International Data Corporation (IDC), worldwide semiconductor revenue is expected to reach $800 billion in 2025, growing 17.6% year-over-year from $680 billion in 2024. This follows a strong rebound in 2024, when revenue grew by 22.4% year-over-year.