Human Brain Project: Pilot Systems for Interactive Supercomputer
September 29, 2016 | Jülich Supercomputing CentreEstimated reading time: 3 minutes
The Jülich Supercomputing Centre has begun operation of two new pilot systems for an interactive supercomputer. The systems – JULIA, created by Cray, and JURON from IBM and NVIDIA – are specifically designed for applications in the neurosciences. The installation and test phase are part of a special procurement for the European Human Brain Project.
The development of an interactive supercomputer for the Human Brain Project (HBP) is making progress. Two consortia have installed their respective proposed solutions at the Jülich Supercomputing Centre (JSC), where Jülich scientists and their colleagues from the HBP will now test how powerful the two systems are and how well they fulfil the desired functions. For this purpose, they are using simulation software such as NEST, which is being developed by Jülich scientists headed by Prof. Markus Diesmann from the Institute of Neuroscience and Medicine (INM-6), together with neuroscientists from all over the world. NEST makes it possible to simulate neuronal networks in the brain. It is planned that in the future the resulting data can be directly analysed and compared to experimental data using the novel supercomputers. In order to achieve this, an international team of scientists headed by Prof. Sonja Grün (INM-6), together with JSC's Simulation Laboratory Neuroscience, are further developing the "Elephant" software. Methods for data and image analysis developed by Jülich researchers headed by Prof. Katrin Amunts from the Institute of Neuroscience and Medicine (INM-1) are also employed. Among other aspects, three-dimensional models of the human brain such as the BigBrain project are to be realized, as well as maps recording the connections between different regions of the brain.
Being able to interactively operate supercomputers for such applications is viewed as a key element for future neuroscience. So far, supercomputers work on tasks largely autonomously. The aim for the future is for scientists to be able to interact with their jobs and to control them interactively. The special challenge is that this requires data to be rapidly analysed and visualized in parallel to the main application. This means that the computers of the future must handle even more data than the enormous amounts that already arise today.
For their concepts, the two consortia are making use of fast computing technologies, not all of which are yet commercially available. The compute nodes communicate via fast network technologies of the latest generation. A unique selling point is the integration of new, non-volatile memory technologies which will, in the future, permit the realization of much larger memory capacities. Both consortia have also integrated graphics processing units (GPU) for visualization purposes.
JULIA and JURON comprise two racks each. For JURON (the name is derived from JUelich and NeuRON), IBM and NVIDIA make use of completely novel Tesla GPUs of the Pascal generation, which are capable of particularly fast communication with each other and with IBM's POWER8 processor on the basis of the NVLink technology. Cray introduced new processor and network technology from Intel in the JULIA supercomputer, whose name is derived from JUelich and gLIA, a type of cell in the nervous system. In order to offer more memory in the system, special Cray DataWarp nodes were integrated, which provide a lot of non-volatile memory. The results of both approaches will be reviewed in early 2017.
The two new pilot systems for an interactive supercomputer, which are installed at Jülich Supercomputing Centre: JULIA, created by Cray, and JURON from IBM and NVIDIA. The central racks represent the storage system both pilot systems can access. Both systems are specifically designed for applications in the neurosciences. The installation and test phase are part of a special procurement for the European Human Brain Project. Copyright: Forschungszentrum Jülich
Pre-Commercial Procurement (PCP)
Both systems serve to evaluate research and development work as part of Pre-Commercial Procurement (PCP). The Human Brain Project chose this special type of procurement, funded by the European Commission, in order to find suitable technology solutions for future high-performance computers designed specifically for neuroscience. The objective is a computer with a peak performance of initially 50 petaflop/s and a memory capacity of 20 petabytes, with which large-scale brain simulations can be interactively visualized and controlled. The procurement process began in April 2014 and is planned to be concluded in 2017. Its aim is to support the development of technologies to be integrated in future products. Forschungszentrum Jülich hopes that in this way, suitable solutions for the development of the HBP High Performance Analytics & Computing Platform will become available on the market.
Suggested Items
Cadence Unveils Millennium M2000 Supercomputer with NVIDIA Blackwell Systems
05/08/2025 | Cadence Design SystemsAt its annual flagship user event, CadenceLIVE Silicon Valley 2025, Cadence announced a major expansion of its Cadence® Millennium™ Enterprise Platform with the introduction of the new Millennium M2000 Supercomputer featuring NVIDIA Blackwell systems, which delivers AI-accelerated simulation at unprecedented speed and scale across engineering and drug design workloads.
IPC White Paper Maps the Regulatory Terrain for Electronics Suppliers in E-Mobility Sector
05/07/2025 | IPCElectronics suppliers supporting the rapidly growing e-mobility sector are facing a dramatic escalation in environmental and social governance (ESG) compliance expectations. A new white paper from IPC’s e-Mobility Quality and Reliability Advisory Group provides a comprehensive overview of the evolving regulatory landscape and outlines the data infrastructure needed to stay ahead.
Navigating Global Manufacturing in an Era of Uncertainty
05/07/2025 | Philip Stoten, ScoopThe EMS industry faces unprecedented challenges as global trade tensions rise and tariff announcements create market uncertainty. In an overview of IPC Europe’s podcast, MADE IN EUROPE, industry experts from GPV and Zollner examine how these developments impact our businesses and customers, and what strategies will prevail in this new landscape.
From Execution to Intelligence: A Data-driven Approach to Modern Manufacturing
05/06/2025 | Barry Matties, I-Connect007In this discussion, Augusto Vilarinho, an MES expert at Critical Manufacturing, explores the essential functions of MES in tracking and tracing shop floor activities where AI and machine learning capabilities are purposely built into the MES through it's embedded data platform, capturing all machine data, integrating and connecting with different systems, ERPs, physical equipment, and people.
AT&S Starts High Volume Manufacturing at New Plant in Kulim/Malaysia
05/06/2025 | AT&SAT&S Austria Technologie & Systemtechnik (Malaysia) Sdn Bhd is ready to start high volume manufacturing at the new campus at Kulim Hi-Tech Park (KHTP) in the state of Kedah. AT&S Malaysia delivers high-end Integrated Circuit (IC) Substrates for AMD’s data center processors and other customers.