Researchers Discovered New Method for Improving Perovskite Solar Cell Performance
June 22, 2017 | Aalto UniversityEstimated reading time: 2 minutes

The Aalto-developed treatment builds on previous breakthroughs improving the efficiency and longevity of perovskite solar cells using established printing methods (carbon back contact based perovskite solar cells or CPSCs). These findings make it possible to further enhance the efficiency of these types of solar cells.
A humidity assisted and thermal treated (HTE) carbon-based printed perovskite solar cell. Photo: Ghufran Hashmi.
Perovskite solar cells are solar cells where the light harvesting layer consists of lead halide with perovskite crystal structure. Globally, perovskite cells are studied intensively since they might prove to be an alternative to silicon cells that require a lot of energy in the manufacturing process.
In the new method, the perovskite solar cells were exposed to 40-degrees in a chamber where humidity was kept in the level of 70% (±5%). This kind of environment normally degrades the properties of perovskite solar cells. In this case, the treatment led to surprising growth of the perovskite crystals, which naturally absorb sunlight and generate electricity.
“The photovoltaic performance was significantly enhanced, and the overall efficiency increased almost 45%,” says Dr Ghufran Hashmi, an Academy of Finland postdoctoral researcher.
“Ghufran Hashmi was interested in possible changes in the atomic structure of the perovskite solar cells. With the state-of-the-art X-ray diffractometer of the Nanomicroscopy Center at Aalto, we were able to monitor the crystallite structure of the perovskite layer before and after the treatment,” says Dr Ulla Vainio, a staff scientist in the Department of Applied Physics, who assisted Hashmi with collecting experimental data.
The team did not stop there, but examined the perovskites using a scanning electron microscopy (SEM). “The SEM images supported the previous observations obtained from the X-ray diffraction method analysis, which endorsed the gradual crystal growth over the period of exposure,” reports Dr Teemu Sarikka, a staff scientist in the Department of Mechanical Engineering.
The task of physics doctoral student Teemu Myllymäki was to check if any chemical changes occurred in the perovskite crystal structure induced by the moisture generated by the thermo-humid environment. In his research, Myllymäki utilized Fourier transform infrared spectroscopy (FTIR). “The comparison between the fresh and exposed solar cells revealed almost no change in the chemical structure of the perovskite light absorbing layer, which endorses the successful implementation of this new treatment method,” he reports.
Solar cells are part of the rapidly expanding area of next-generation, low-cost photovoltaic systems. The team at Aalto benefited from working with collaborators in Switzerland, the Solaronix company and the Swiss Federal Institute of Technology (EPFL) in Lausanne. “Solaronix provided the samples and EPFL researcher Dr Ibrahim Dar helped us in key processes that are critically required for the successful commercialization of this low cost solar cell technology,” says Dr Hashmi.
The team from Aalto University involved in this research work with an HTE treated carbon based printed perovskite solar cell. From left to right: Teemu Myllymäki, Ghufran Hashmi, Ulla Vainio, Teemu Sarikka. Photo: Nonappa.
Suggested Items
Just Because You Can, Doesn’t Mean You Should
03/20/2025 | Tony Plemel, Flexible Circuit TechnologiesDecisions are usually made by gathering information and differing opinions, then making the best choice based upon that information. The same process is used when designing flexible circuits and rigid-flex circuits. For example, when designing a flex circuit or rigid-flex circuit, we consider some basic factors.
Beyond Design: Key SI Considerations for High-speed PCB Design
03/20/2025 | Barry Olney -- Column: Beyond DesignOver the past two decades, I've simulated numerous complex, high-speed designs for customers creating computer-based products. In addition, I've conducted signal integrity software training courses and led classes on high-speed design. In this month’s column, I will reflect on the key considerations for achieving a successful high-speed PCB design that performs reliably, and I’ll highlight some of the common signal integrity issues that I frequently encounter.
Managing Energy Flow with Proper Stackup Design
02/13/2025 | Andy Shaughnessy, Design007At Design Con 2025, I had the opportunity to speak with Dan Beeker, technical director at NXP Semiconductor, about his technical session, which focused on optimizing PCB layers to best direct signal and power supply energy between these layers. In this interview, Dan discusses the complexities of board stackup and the significance of understanding dielectric layers for effective signal transmission. Dan is something of a “fields evangelist,” spreading the word about the need for designers to focus on fields, not just circuit theory. Toward the end, Dan summed up much of the design segment: Designing something that didn't make it break is not the same thing as designing it correctly.
Multilayer PCB Market to Reach $116.1B by 2032 at 5.5% CAGR: Allied Market Research
02/12/2025 | Globe NewswireAccording to the report, the "multilayer printed circuit board market" was valued at $71 billion in 2023, and is estimated to reach $116.1 billion by 2032, growing at a CAGR of 5.5% from 2024 to 2032.
MBK Partners Consortium to Acquire FICT Limited
02/11/2025 | FICT LimitedMBK Partners , one of the largest independent private equity groups in Asia, is acquiring the outstanding shares of FICT Limited, a global leader in interconnection technology, which includes high-multilayer printed circuit boards and build-up substrates.