Researchers Discovered New Method for Improving Perovskite Solar Cell Performance
June 22, 2017 | Aalto UniversityEstimated reading time: 2 minutes
The Aalto-developed treatment builds on previous breakthroughs improving the efficiency and longevity of perovskite solar cells using established printing methods (carbon back contact based perovskite solar cells or CPSCs). These findings make it possible to further enhance the efficiency of these types of solar cells.
A humidity assisted and thermal treated (HTE) carbon-based printed perovskite solar cell. Photo: Ghufran Hashmi.
Perovskite solar cells are solar cells where the light harvesting layer consists of lead halide with perovskite crystal structure. Globally, perovskite cells are studied intensively since they might prove to be an alternative to silicon cells that require a lot of energy in the manufacturing process.
In the new method, the perovskite solar cells were exposed to 40-degrees in a chamber where humidity was kept in the level of 70% (±5%). This kind of environment normally degrades the properties of perovskite solar cells. In this case, the treatment led to surprising growth of the perovskite crystals, which naturally absorb sunlight and generate electricity.
“The photovoltaic performance was significantly enhanced, and the overall efficiency increased almost 45%,” says Dr Ghufran Hashmi, an Academy of Finland postdoctoral researcher.
“Ghufran Hashmi was interested in possible changes in the atomic structure of the perovskite solar cells. With the state-of-the-art X-ray diffractometer of the Nanomicroscopy Center at Aalto, we were able to monitor the crystallite structure of the perovskite layer before and after the treatment,” says Dr Ulla Vainio, a staff scientist in the Department of Applied Physics, who assisted Hashmi with collecting experimental data.
The team did not stop there, but examined the perovskites using a scanning electron microscopy (SEM). “The SEM images supported the previous observations obtained from the X-ray diffraction method analysis, which endorsed the gradual crystal growth over the period of exposure,” reports Dr Teemu Sarikka, a staff scientist in the Department of Mechanical Engineering.
The task of physics doctoral student Teemu Myllymäki was to check if any chemical changes occurred in the perovskite crystal structure induced by the moisture generated by the thermo-humid environment. In his research, Myllymäki utilized Fourier transform infrared spectroscopy (FTIR). “The comparison between the fresh and exposed solar cells revealed almost no change in the chemical structure of the perovskite light absorbing layer, which endorses the successful implementation of this new treatment method,” he reports.
Solar cells are part of the rapidly expanding area of next-generation, low-cost photovoltaic systems. The team at Aalto benefited from working with collaborators in Switzerland, the Solaronix company and the Swiss Federal Institute of Technology (EPFL) in Lausanne. “Solaronix provided the samples and EPFL researcher Dr Ibrahim Dar helped us in key processes that are critically required for the successful commercialization of this low cost solar cell technology,” says Dr Hashmi.
The team from Aalto University involved in this research work with an HTE treated carbon based printed perovskite solar cell. From left to right: Teemu Myllymäki, Ghufran Hashmi, Ulla Vainio, Teemu Sarikka. Photo: Nonappa.
Suggested Items
Quiet Power: An Evolution in PCB Design Costs
09/04/2024 | Istvan Novak -- Column: Quiet PowerIn this column, I want to cover my experiences, particularly where costs are concerned, with printed circuit boards from the 1960s to the present day. I grew up in an apartment building in downtown Budapest, where I began doing hobby projects building circuits from our kitchen table. Now, I’m lecturing about the most recent advances in signal integrity at Oxford University. We’ve come a long way. Over the decades, new technologies allowed users to have more layers, lower-loss dielectrics, fine-pitch surface connections, blind and buried vias, and HDI and HDI+ board constructions that allow us to design higher-performing systems. I expect this trend to continue.
Connect the Dots: Designing for Reality—Electroless Copper
08/28/2024 | Matt Stevenson -- Column: Connect the DotsRoll up your sleeves because it's time to get messy. In a recent episode of I-Connect007’s On the Line with… podcast, we discussed electroless copper deposition. This process deposits a copper layer into the through-holes and vias of what will eventually be a PCB. Electroless copper deposition feels like a black box to many people. It sort of looks like a black box, too. The boards go in one side, come out the other, and emerge differently. So, let's crack open that black box and look inside.
Elementary, Mr. Watson: Debunking Misconceptions in PCB Design
08/22/2024 | John Watson -- Column: Elementary, Mr. WatsonPCB design can be likened to the poem, “The Blind Man and the Elephant” by John Godfrey Saxe. In the poem, six blind men of Indostan “to learning much inclined,” went to see the elephant “that each by observation, might satisfy the mind.” The first man fell against the elephant and concluded it was like touching a wall. The second man felt the elephant’s tusk and exclaimed, "It is very like a spear." The third blind man, feeling the vast and squirming trunk, decided it was a snake. The fourth man felt the elephant's leg and said the elephant “is very like a tree." The fifth man touched the massive ears and decided an elephant is very like a fan. Finally, the sixth blind man, feeling the elephant’s swinging tail, proudly proclaimed, "I see, the elephant is very like a rope."
Cost-optimize Your PCB Design and Specifications
08/20/2024 | Erik Pedersen and Richard Koensgen, ICAPE GroupKnowledge is the key to identifying the small details that makes the big cost difference for your printed circuit board. There are many types of printed circuit boards and multiple choices between the development of schematic and BOM to PCB technology selection, electronic PCB design, mechanical and physical properties, and PCB specification.
Terran Orbital’s Tyvak Awarded $254M Prototype Agreement for Tranche 2 Transport Layer (T2TL) Gamma
08/20/2024 | BUSINESS WIRETyvak Nano-Satellite Systems, Inc., Irvine, California, a global leader in satellite-based solutions primarily serving the aerospace and defense industries, is proud to announce it has been chosen by the Space Development Agency (SDA) to produce 10 satellites for the Tranche 2 Transport Layer (T2TL) Gamma contract.