NASA's Juno Finds Changes in Jupiter's Magnetic Field
May 23, 2019 | NASAEstimated reading time: 3 minutes

NASA's Juno mission to Jupiter made the first definitive detection beyond our world of an internal magnetic field that changes over time, a phenomenon called secular variation. Juno determined the gas giant's secular variation is most likely driven by the planet's deep atmospheric winds.
Image Caption: This still from an animation illustrates Jupiter's magnetic field at a single moment in time. The Great Blue Spot, an-invisible-to-the-eye concentration of magnetic field near the equator, stands out as a particularly strong feature. Credits: NASA/JPL-Caltech/Harvard/Moore et al.
The discovery will help scientists further understand Jupiter's interior structure — including atmospheric dynamics — as well as changes in Earth's magnetic field. A paper on the discovery was published today in the journal Nature Astronomy.
"Secular variation has been on the wish list of planetary scientists for decades," said Scott Bolton, Juno principal investigator from the Southwest Research Institute in San Antonio. "This discovery could only take place due to Juno's extremely accurate science instruments and the unique nature of Juno's orbit, which carries it low over the planet as it travels from pole to pole."
Characterizing the magnetic field of a planet requires close-up measurements. Juno scientists compared data from NASA's past missions to Jupiter (Pioneer 10 and 11, Voyager 1 and Ulysses) to a new model of Jupiter's magnetic field (called JRM09). The new model was based on data collected during Juno's first eight science passes of Jupiter using its magnetometer, an instrument capable of generating a detailed three-dimensional map of the magnetic field.
This striking view of Jupiter's Great Red Spot and turbulent southern hemisphere was captured by NASA's Juno spacecraft as it performed a close pass of the gas giant planet. Credits: NASA/JPL-Caltech/SwRI/MSSS/Kevin M. Gill
What scientists found is that from the first Jupiter magnetic field data provided by the Pioneer spacecraft through to the latest data provided by Juno, there were small but distinct changes to the field.
"Finding something as minute as these changes in something so immense as Jupiter's magnetic field was a challenge," said Kimee Moore, a Juno scientist from Harvard University in Cambridge, Massachusetts. "Having a baseline of close-up observations over four decades long provided us with just enough data to confirm that Jupiter's magnetic field does indeed change over time."
Once the Juno team proved secular variation did occur, they sought to explain how such a change might come about. The operation of Jupiter's atmospheric (or zonal) winds best explained the changes in its magnetic field. These winds extend from the planet's surface to over 1,860 miles (3,000 kilometers) deep, where the planet's interior begins changing from gas to highly conductive liquid metal. They are believed to shear the magnetic fields, stretching them and carrying them around the planet.
Nowhere was Jupiter's secular variation as large as at the planet's Great Blue Spot, an intense patch of magnetic field near Jupiter's equator. The combination of the Great Blue Spot, with its strong localized magnetic fields, and strong zonal winds at this latitude result in the largest secular variations in the field on the Jovian world.
"It is incredible that one narrow magnetic hot spot, the Great Blue Spot, could be responsible for almost all of Jupiter's secular variation, but the numbers bear it out," said Moore. "With this new understanding of magnetic fields, during future science passes we will begin to create a planetwide map of Jupiter's secular variation. It may also have applications for scientists studying Earth's magnetic field, which still contains many mysteries to be solved."
NASA's JPL manages and operates the Juno mission for the principal investigator, Scott Bolton, of the Southwest Research Institute in San Antonio. Juno is part of NASA's New Frontiers Program, which is managed by NASA's Marshall Space Flight Center in Huntsville, Alabama, for the agency's Science Mission Directorate. The Italian Space Agency (ASI) contributed two instruments, a Ka-band frequency translator (KaT) and the Jovian Infrared Auroral Mapper (JIRAM). Lockheed Martin Space in Denver built and operates the spacecraft.
Suggested Items
Optomec Showcases Latest Additive Manufacturing Print Heads at RAPID + TCT 2023
05/03/2023 | Business WireOptomec, a leading manufacturer of Additive Manufacturing machines for both 3D Printed Metal and Printed Electronics will showcase its latest print solutions for each technology at RAPID + TCT 2023.
American Standard Circuits to Launch Global Sourcing Column
05/03/2023 | American Standard CircuitsAmerican Standard Circuits announces a new column from its head of global sourcing, Bob Duke. In the new column, “Global Sourcing Spotlight,” Duke discusses the various aspects of global sourcing and offers advice on how to get started. His 40+ years of industry experience, especially as principal at M-Wave Controls, have provided him a wealth of insight into the topic.
MKS Continues to Increase Performance for CapStone Flex PCB Drill System
01/24/2023 | MKS Instruments, Inc.MKS Instruments, Inc., a global provider of technologies that enable advanced processes and improve productivity, today at IPC|APEX 2023, announced the launch of SPOT ON™, an optional feature upgrade available for the CapStone™ laser via drilling system. SPOT ON increases system uptime through early warning of spot quality deviation and increases the CapStone's yield performance by reducing leading causes of via quality degradation.
Crew Welfare Enhanced at Anglo-Eastern with Inmarsat Fleet Hotspot
11/22/2022 | InmarsatAnglo-Eastern Ship Management, a leading global provider of ship management services with more than 40 years of experience supporting shipowners worldwide, has chosen Inmarsat to connect its crew.
June 2022 Issue of Design007 Magazine Available Now
06/08/2022 | I-Connect007 Editorial TeamIn our industry, we love our acronyms. Especially the “design fors,” such as DFM, DFA, and DFT. The newest example is DWM, design with manufacturing, and this “design for” could wind up having a real effect on the PCB development process. If designers and manufacturers actually embrace this concept, DWM could do what DFM was never able to do: Create a transparent communication environment for designers, fabricators, assemblers, and component and materials suppliers. So, this month, we asked our contributors to shine a spotlight on DWM: How do we initiate it, and what does DWM look like in action?