IPC-2581 Revision C: Complete Build Intent for Rigid-Flex
April 30, 2021 | Ed Acheson, Cadence Design SystemsEstimated reading time: 1 minute

With the current design transfer formats, rigid-flex designers face a hand-off conundrum. You know the situation: My rigid-flex design is done so now it is time to get this built and into the product. Reviewing the documentation reveals that there are tables to define the different stackup definitions used in the design. The cross-references for the different zones to areas of the design are all there, I think. The last time a zone definition was missed, we caused a costly mistake.
Continuing to review the design documents, I verify that the bend locations are defined with information about the radius of the bends with a detail about how the final product looks when all bending is complete, ensuring that the folds are made in the correct order. I hope all information is contained in the documentation, and there will be no calls from the fabricator delaying the product. With all these documents and details left open to interpretation, there must be a way to send this data more intelligently.
Enter IPC-2581 Revision C
There is a way to transfer this data digitally, reducing the need for various forms of drawing details in a document. The new IPC-2581 Revision C format eliminates the need to manually—and painstakingly—create these details in a fabrication drawing. It uses the design data to explicitly define the multiple aspects of a rigid-flex design. How? Let’s look at how some of the details are sent digitally.
First, let’s look at stackup and general board structure. In the design tool, the different stackup details are created, with one or more rigid stackup definitions (8-layer vs. 4-layer, etc.) as well as several flex stackup structures (1 or 2 copper layers, etc.). In my design database a boundary is defined and the stackup data is assigned to those boundaries. This data is then placed into the IPC-2581C format containing the links of each stackup to each boundary association. These are known in IPC-2581 terms as stackup groups assigned to stackup zones. A by-product of these connections is the ability to define the outline profile for each copper and dielectric layer, a key tool for the fabricator.
To read this entire article, which appeared in the March 2021 issue of Design007 Magazine, click here.
Testimonial
"We’re proud to call I-Connect007 a trusted partner. Their innovative approach and industry insight made our podcast collaboration a success by connecting us with the right audience and delivering real results."
Julia McCaffrey - NCAB GroupSuggested Items
Electrodeposited Copper Foils Market to Grow by $11.7 Billion Over 2025-2032
09/18/2025 | Globe NewswireThe global electrodeposited copper foils market is poised for dynamic growth, driven by the rising adoption in advanced electronics and renewable energy storage solutions.
MacDermid Alpha Showcases Advanced Interconnect Solutions at PCIM Asia 2025
09/18/2025 | MacDermid Alpha Electronics SolutionsMacDermid Alpha Electronic Solutions, a global leader in materials for power electronics and semiconductor assembly, will showcase its latest interconnect innovations in electronic interconnect materials at PCIM Asia 2025, held from September 24 to 26 at the Shanghai New International Expo Centre, Booth N5-E30
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Closing the Loop on PCB Etching Waste
09/09/2025 | Shawn Stone, IECAs the PCB industry continues its push toward greener, more cost-efficient operations, Sigma Engineering’s Mecer System offers a comprehensive solution to two of the industry’s most persistent pain points: etchant consumption and rinse water waste. Designed as a modular, fully automated platform, the Mecer System regenerates spent copper etchants—both alkaline and acidic—and simultaneously recycles rinse water, transforming a traditionally linear chemical process into a closed-loop system.
Driving Innovation: Depth Routing Processes—Achieving Unparalleled Precision in Complex PCBs
09/08/2025 | Kurt Palmer -- Column: Driving InnovationIn PCB manufacturing, the demand for increasingly complex and miniaturized designs continually pushes the boundaries of traditional fabrication methods, including depth routing. Success in these applications demands not only on robust machinery but also sophisticated control functions. PCB manufacturers rely on advanced machine features and process methodologies to meet their precise depth routing goals. Here, I’ll explore some crucial functions that empower manufacturers to master complex depth routing challenges.