All Flex Discusses Merger and New Medical Applications
November 19, 2021 | Nolan Johnson, I-Connect007Estimated reading time: 4 minutes
I recently spoke with Jamin Taylor, vice president of sales and marketing at All Flex Flexible Circuits in Minnesota. We discussed the company’s recent merger with Printed Circuits Inc., and some creative new flex applications, including flexible heaters and catheters for the medical field.
Nolan Johnson: There’s been some news recently for All Flex. Why don’t we start with the announcement of the merger?
Jamin Taylor: About nine months ago, our parent company purchased Printed Circuits Inc. out of Bloomington, Minnesota with the plans of merging the two companies. We’re in the planning process right now with PCI to create a single entity and look at rebranding. The two companies have really expanded our technologies, with All Flex and our flexible circuits, and PCI and their rigid flex capability. Now we can expand our product offering to our customer base in the U.S.
Johnson: Were there any pleasant surprises in capabilities now that you’ve got the two companies together?
Taylor: It’s always interesting to see different technologies amongst different companies. We’re working on a few new applications and products, like being able to do some fine lines and flex materials, but with large format, a longer format than usual. Some of their capabilities with lasering and fine features really help with our long flex capability; when we merge the two, we see a new market being created for that technology.
Johnson: I understand you’re now developing fine-line catheters. Tell me about that.
Taylor: Fine line means small features, 2-mil lines and spaces; that’s not new to the industry, but being able to do it in five-, six-, and seven-foot lengths is new. This is for catheter applications in the medical space. We trademarked Fine-Line Maxi Flex and CatheterFlex. The Medtronics and Boston Scientifics of the world that are doing heart-mapping, heart ablation for AFib, for example, will now be able to do it less invasively by going through the femoral artery up into the heart.
To map or to ablate, you need electronics; using traditional wires was okay, but they’re running out of space. You can’t make this as large as possible. The flexible circuit allows us to get 64 or 128 channels down the length of this catheter in a much smaller, much more flexible format than traditional wires. It’s really enabling the capability of mapping and providing more resolution for mapping of the heart. We’re seeing a pretty significant interest amongst the big players in this type of technology.
Johnson: Has there been other creative development ongoing in your R&D development team?
Taylor: Yes, we’re also looking at flexible heaters. Traditional flex circuits are made with copper low resistance, right? We’re transferring signals, or maybe some high current carrying features. There’s also the ability to use a resistive foil and create a heating element. The thin film of the traditional polyimides allows for extremely fast heat transfer; with COVID, and in some of the testing that’s been done, there’s a huge demand for heating elements in biomedical, bacterial, or viral testing. The flu, colds, and coronaviruses can all be tested in a lab and that lab has to heat up the tissue sample or the DNA sample to a specific temperature and then get a positive or a negative.
The flexible heater technology is not something new. There just haven’t been many players in that market. It has been beneficial to be able to do some fine line features, some long features, as well as etch resist to foils. We really looked at that market and think we can expand upon it. We can bring some of the rigid flex capabilities that PCI has, couple that together, and really broaden our market for flexible heating.
Johnson: I’m sensing that with this merger, you’re finding some creative ways to diversify.
Taylor: Absolutely. PCI has been a high-tech company. They’ve focused on military applications, complexity, multiple layer counts. So, they’ve developed a lot of good technologies for microvias, blind vias, and fill vias, and we’ve brought our flex knowledge with medical applications specifically. We’re able to bring a lot of medical customers into that rigid-flex territory. And then they’re able to bring a lot of the military and aerospace customers into the flex, and we also do full assembly in-house. That’s something that All Flex brings to the table, being able to populate these boards, and with rigid flex, it’s like a motherboard combined with an interconnect, right? There are always components being populated and PCI didn’t have that capability. Now we can do more value-add as a combined company and maybe in the future, box-build is something we could continue to look at.
Johnson: Jamin, thank you for the update.
Taylor: I appreciate it. Thank you very much.
This conversation originally appeared in the November 2021 issue of Design007 Magazine.
Suggested Items
Trouble in Your Tank: Things You Can Do for Better Wet Process Control
09/11/2024 | Michael Carano -- Column: Trouble in Your TankFor 40 years, I have been involved in the printed circuit board, circuit board assembly, and semiconductor technology segments, preaching about minimizing defects and improving yields. This is especially true as technology becomes increasingly complex, and additional focus must be placed on yield improvements. Process management and wet process control must be front and center, so it’s quite interesting and timely to talk about wet process control and management for this month’s issue. This theme fits quite well with today's global events. For this industry, the technical curve has steepened dramatically in the past few years.
Atotech to Participate at KPCA Show 2024
09/03/2024 | AtotechMKS’ Atotech will participate in this year’s KPCA Show 2024 in Incheon, held at Songdo Convensia from September 4-6, 2024.
Victory Announces Breakthrough in PCB Technology with New Product Launch
08/29/2024 | openPRShenzhen Victory Electronics Technology Co., Ltd., a leader in the printed circuit board (PCB) manufacturing industry, is proud to announce the successful development of a groundbreaking new product.
Connect the Dots: Designing for Reality—Electroless Copper
08/28/2024 | Matt Stevenson -- Column: Connect the DotsRoll up your sleeves because it's time to get messy. In a recent episode of I-Connect007’s On the Line with… podcast, we discussed electroless copper deposition. This process deposits a copper layer into the through-holes and vias of what will eventually be a PCB. Electroless copper deposition feels like a black box to many people. It sort of looks like a black box, too. The boards go in one side, come out the other, and emerge differently. So, let's crack open that black box and look inside.
Maximizing ROI Through Better Wet Process Control
08/20/2024 | I-Connect007 Editorial Team“When things get out of control, the variation in your wet process begins,” says Mike Carano,. “Just because they look like good boards and may even pass electrical test, it does not necessarily mean you have good boards. Once the chemistry is headed toward the right or left side of the process control parameter cliff, the plating is compromised. If the copper is thinner than it should be, when the customer puts it into service, the board may fail after 500 cycles vs. the requisite 1,000 or 2,000 cycles. The root cause issue is that you plated 7/10ths of a mil of copper instead of one-mil of copper because you were not controlling your process. The fact that you passed your own electric test becomes inconsequential.”