A New Platform for Controlled Design of Printed Electronics with 2D Materials
December 22, 2021 | Imperial College LondonEstimated reading time: 3 minutes

A study, published in Nature Electronics, led by Imperial College London and Politecnico di Torino researchers reveals the physical mechanisms responsible for the transport of electricity in printed two-dimensional (2D) materials.
The work identifies what properties of 2D material films need to be tweaked to make electronic devices to order, allowing rational design of a new class of high-performance printed and flexible electronics.
Silicon chips are the components that power most of our electronics, from fitness trackers to smartphones. However, their rigid nature limits their use in flexible electronics. Made of single-atom-thick layers, 2D materials can be dispersed in solution and formulated into printable inks, producing ultra-thin films that are extremely flexible, semi-transparent and with novel electronic properties.
This opens up the possibility of new types of devices, such as those that can be integrated into flexible and stretchable materials, like clothes, paper, or even tissues into the human body.
Controlled design and engineering
Previously, researchers have built several flexible electronic devices from printed 2D material inks, but these have been one-off ‘proof-of-concept’ components, built to show how one particular property, such as high electron mobility, light detection, or charge storage can be realised.
However, without knowing which parameters to control in order to design printed 2D material devices, their widespread use has been limited. Now, the international research team have studied how electronic charge is transported in several inkjet-printed films of 2D materials, showing how it is controlled by changes in temperature, magnetic field, and electric field.
The team investigated three typical types of 2D materials: graphene (a ‘semimetal’ built from a single layer of carbon atoms), molybdenum disulphide (or MoS2, a ‘semiconductor’) and titanium carbide MXene (or Ti3C2, a metal) and mapped how the behaviour of the electrical charge transport changed under these different conditions.
These future devices could one day replace invasive procedures, such as implanting brain electrodes to monitor degenerative conditions that affect the nervous system. Electrodes can only be implanted on a temporary basis, and are uncomfortable for the patient, whereas a flexible device made of biocompatible 2D materials could be integrated with the brain and provide constant monitoring.
Lead researcher Dr Felice Torrisi, from the Department of Chemistry at Imperial, said: “Our results have a huge impact on the way we understand the transport through networks of two-dimensional materials, enabling not only the controlled design and engineering of future printed electronics based on 2D materials, but also new types of flexible electronic devices.
“For example, our work paves the way to reliable wearable devices suitable for biomedical applications, such as the remote monitoring of patients, or bio-implantable devices for long-term monitoring of degenerative diseases or healing processes.”
Other potential healthcare applications include wearable devices for monitoring healthcare – devices like fitness watches, but more integrated with the body, providing sufficiently accurate data to allow doctors to monitor patients without bringing them into hospital for tests.
Optimal designs
The relationships the team discovered between 2D material type and the controls on electrical charge transport will help other researchers design printed and flexible 2D material devices with the properties they desire, based on how they need the electrical charge to act.
They could also reveal how to design entirely new types of electrical components impossible using silicon chips, such as transparent components or ones that modify and transmit light in new ways.
Co-author Professor Renato Gonnelli, from the Politecnico di Torino, Italy, said: “The fundamental understanding of how the electrons are transported through networks of 2D materials underpins the way we manufacture printed electronic components. By identifying the mechanisms responsible for such electronic transport, we will be able to achieve the optimum design of high-performance printed electronics.”
Co-first author Adrees Arbab, from the Department of Chemistry at Imperial and the Cambridge Graphene Centre, said: “In addition, our study could unleash the new electronic and optoelectronic devices exploiting the innovative properties of graphene and other 2D materials, such as incredibly high mobility, optical transparency, and mechanical strength.”
Read the original article, here.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Accelerating Embedded Innovation: Orthogone Becomes Texas Instruments Design Partner
09/17/2025 | PRNewswireOrthogone Technologies Inc., a leader in advanced embedded systems and FPGA development, is proud to announce its official designation as a Texas Instruments (TI) Design Services Partner.
BLT Joins Microchip Partner Program as Design Partner
09/17/2025 | BUSINESS WIREBLT, a U.S.-owned and operated engineering design services firm announced it has joined the Microchip Design Partner Program.
Staying on Top of Signal Integrity Challenges
09/16/2025 | Andy Shaughnessy, Design007 MagazineOver the years, Kris Moyer has taught a variety of advanced PCB design classes, both online IPC courses and in-person classes at California State University-Sacramento, where he earned his degrees in electrical engineering. Much of his advanced curriculum focuses on signal integrity, so we asked Kris to discuss the trends he’s seeing in signal integrity today, the SI challenges facing PCB designers, and his go-to techniques for controlling or completely eliminating SI problems.
American Standard Circuits to Exhibit and Host Lunch & Learn at PCB West 2025
09/17/2025 | American Standard CircuitsAnaya Vardya, President, and CEO of American Standard Circuits/ASC Sunstone Circuits has announced that his company will once again be exhibiting at PCB West 2025 to be held at the Santa Clara Convention Center on Wednesday, October 1, 2025.
ASM Technologies Limited signs MoU with the Guidance, Government of Tamilnadu to Expand Design-Led Manufacturing capabilities for ESDM
09/15/2025 | ASM TechnologiesASM Technologies Limited, a pioneer in Design- Led Manufacturing in the semiconductor and automotive industries, announced signing of Memorandum of Understanding (MoU) with the Guidance, Government of Tamilnadu whereby it will invest Rs. 250 crores in the state to expand its ESDM related Design-Led Manufacturing and precision engineering capacity. ASM Technologies will acquire 5 acres of land from the Government of Tamilnadu to set up a state-of-the-art design facility in Tamil Nadu's growing technology manufacturing ecosystem, providing a strong strategic advantage and long-term benefits for ASM.