Intel Joins DARPA’s Space-BACN to Accelerate Inter-Satellite Communications
October 12, 2022 | IntelEstimated reading time: 3 minutes

The U.S. Defense Advanced Research Projects Agency (DARPA) has selected Intel for Phase 1 of the Space-Based Adaptive Communications Node (Space-BACN) program, which aims to create a low-cost, reconfigurable optical communications terminal that will translate information between diverse satellite constellations. A Space-BACN satellite terminal will enable communications between satellite constellations, enabling data to be sent anywhere around the planet at the speed of light.
“Intel’s vision is to create world-changing technology that improves the life of every person on the planet. This program helps us to deliver on that vision by enabling global connectivity from space to anywhere across the planet – enabling broadband services and the IoT where not just every person but everything is connected,” says Sergey Shumarayev, Intel senior principal engineer and principal investigator in the Programmable Solutions CTO Group
DARPA is planning for a future where tens of thousands of satellites from multiple private sector organizations deliver broadband services from low earth orbit (LEO). The goal of Space-BACN is to create an “internet” of satellites, enabling seamless communication between military/government and commercial/civil satellite constellations.
The program will facilitate collaboration among partners to ensure that the terminal being designed is reconfigurable to provide interoperability among the participating constellation providers.
There are three technical areas in the program.
DARPA selected Intel for Technical Area 2 (TA2) along with II-VI Aerospace and Defense and Arizona State University to design a reconfigurable optical modem that will support both current and new communication standards and protocols to enable interoperability among satellite constellations.
Technical Area 1 (TA1) focuses on the development of an optical aperture or “head,” which is responsible for pointing acquisition and tracking, as well as the optical transmit and receive functions. DARPA has selected the following organizations for this technical area: CACI Inc., MBRYONICS and Mynaric.
TA1 will interface to TA2 using single-mode optical fiber.
In Technical Area 3 (TA3), DARPA selected constellation providers – Space Exploration Technologies (SpaceX), Telesat, SpaceLink, Viasat and Kuiper Government Solutions (KGS) LLC (an Amazon subsidiary) – to identify critical command and control elements required to support cross-constellation optical intersatellite link communications and develop the schema necessary to interface between Space-BACN and commercial partner constellations.
Intel is developing its optical modem solution by bringing together experts from its field programmable gate array (FPGA) product group, packaging technologists from its Assembly Test Technology Development (ATTD) division and researchers from Intel Labs.
Based on its leading-edge low-power Intel® Agilex™ FPGA, Intel will also design three new chiplets that will be integrated using Intel’s embedded multi-die interconnect bridge (EMIB) and advanced interface bus (AIB) packaging technologies into a single multi-chip package (MCP) that includes:
- A DSP/FEC chiplet on Intel 3, the most advanced digital node, that enables low-power, high-speed digital signal processing.
- A data converter/TIA/driver chiplet on Intel 16, which provides the best-in-class FinFET RF signal processing for integration of high-speed data converters, TIAs and drivers.
- A PIC chiplet based on Tower Semiconductor photonic technologies that offers low-loss waveguides and options, such as V-groove, enabling automated high-volume fiber coupling integration and assembly.
Intel has commenced Phase 1 of the program where it will design each of the above chiplets and work with the other performers to fully define the interfaces between the system components in each of the other technical areas. Phase 1 will last 14 months and conclude with a preliminary design review.
At the completion of Phase 1, selected performers in the first two technical areas will participate in an 18-month Phase 2 to develop engineering design units of the optical terminal components, while performers in the third technical area will continue to evolve the schema to function in more challenging and dynamic scenarios.
Suggested Items
S&K Aerospace Awarded Major Contract Under DLA Maritime Acquisition Advancement Program
07/02/2025 | BUSINESS WIRES&K Aerospace, LLC has been awarded a significant contract under the Defense Logistics Agency’s (DLA) Maritime Acquisition Advancement Program, managed by the U.S. Naval Supply Command - Weapon Systems Support (NAVSUP WSS) in Mechanicsburg, PA.
Green Circuits to Exhibit Full-Service Electronics Manufacturing Solutions at 2025 SMD Symposium
07/02/2025 | Green CircuitsGreen Circuits, a full-service Electronics Manufacturing Services (EMS) partner to leading OEMs, is pleased to announce its participation in the 2025 SMD Symposium, taking place August 5-7 at the Von Braun Center in Huntsville, Alabama.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
06/27/2025 | Nolan Johnson, I-Connect007While news outside our industry keeps our attention occupied, the big news inside the industry is the rechristening of IPC as the Global Electronics Association. My must-reads begins with Marcy LaRont’s exclusive and informative interview with Dr. John Mitchell, president and CEO of the Global Electronics Association. For designers, have we finally reached the point in time where autorouters will fulfill their potential?
Knocking Down the Bone Pile: Tin Whisker Mitigation in Aerospace Applications, Part 3
06/25/2025 | Nash Bell -- Column: Knocking Down the Bone PileTin whiskers are slender, hair-like metallic growths that can develop on the surface of tin-plated electronic components. Typically measuring a few micrometers in diameter and growing several millimeters in length, they form through an electrochemical process influenced by environmental factors such as temperature variations, mechanical or compressive stress, and the aging of solder alloys.
RTX, the Singapore Economic Development Board Sign MOU Outlining 10-year Growth Roadmap
06/20/2025 | RTXRTX and the Singapore Economic Development Board (EDB) have signed a Memorandum of Understanding (MoU) which outlines a 10-year roadmap to further long-term strategic collaboration in Singapore.