Developing Ways to Control and Charge Robots Remotely
June 30, 2015 | Lancaster UniversityEstimated reading time: 2 minutes

Researchers at three top UK universities are developing new ways to simultaneously power and communicate with robots and other digitally connected devices – commonly known as the Internet of Things.
Lancaster University, King’s College London and the University of Leeds are working on the £1million SWIFT project, which is the first collaborative UK effort to address the theory and practicalities of simultaneously transferring information and power across wireless networks.
The SWIFT project constitutes a paradigm shift in future wireless networks as it targets fundamental issues regarding the modelling, analysis, and design of wireless communication systems
Funded by the Engineering and Physical Sciences Research Council (EPSRC), the SWIFT project is supported by leading UK industry partners in the field including Thales, the Mobile VCE, Instrumentel and Lime Microsystems along with prominent international partners from Princeton University and the National University of Singapore.
By bringing together acknowledged experts from information theory, control theory, wireless communications and microwave engineering, this project aims to work out how to wirelessly transfer energy, identify ways networks can be upgraded to enable power transfer to happen, and create a working prototype at the National Facility for Innovative Robotic Systems at Leeds.
Professor Zhiguo Ding, from Lancaster University’s School of Computing and Communications, said: “This project is the first interdisciplinary initiative to promote innovation and technology transfer between academia and industry in the UK for one of the most challenging and most important problems in future communication networks.”
Professor Ian Robertson, of the University of Leeds’ School of Electronic and Electrical Engineering, said: “Wireless power transfer to robots provides many exciting opportunities: In the 1960s, Raytheon demonstrated that a large model helicopter could be remotely powered by a microwave beam and elevated to 50 feet. However, there are many challenges that need to be addressed to make such an approach economical and safe.”
Professor Arumugam Nallanathan, from King’s College London, said: “This research will bring significant benefits to a range of applications including environmental monitoring, tactical surveillance, intelligent transportation, wireless healthcare, future factories, and smart cities.”
Wireless power transfer dates back to the pioneering work of Tesla, who experimentally demonstrated wireless energy transfer (WET) in the late 19th century. Short-range wireless charging of mobile phones and other gadgets is about to become standard practice in consumer electronics thanks to the new “Qi” standard from the Wireless Power Consortium and even electric vehicles can be charged from special units integrated into the road.
Wireless communication systems employ electromagnetic waves in order to transfer information. Up until recently, the information transmission capacity of these signals has been the main focus of research and applications, neglecting their energy content. However, thanks to recent advances in silicon technology, the energy requirements of embedded systems have been significantly reduced, making electromagnetic waves a potentially useful source of energy.
The project is due to run for three years.
Suggested Items
TT Electronics Achieves ISO 13485 Medical Certification at Mexicali EMS Facility
06/27/2025 | TT ElectronicsThis milestone underscores TT Electronics’ commitment to delivering high-quality, compliant, and reliable manufacturing solutions to its global customers in healthcare and life sciences.
Elementary Mr. Watson: Retro Routers vs. Modern Boards—The Silent Struggle on Your Screen
06/26/2025 | John Watson -- Column: Elementary, Mr. WatsonThere's a story about a young woman preparing a holiday ham. Before putting it in the pan, she cuts off the ends. When asked why, she shrugs and says, "That's how my mom always did it." She asks her mother, who gives the same answer. Eventually, the question reaches Grandma, who laughs and says, "Oh, I only cut the ends off because my pan was too small." This story is a powerful analogy for how many PCB designers approach routing today.
Stephen Winchell Appointed DARPA Director
06/02/2025 | DARPAStephen Winchell was sworn in today as the 24th director of the Defense Advanced Research Projects Agency.
Uyemura Expands Engineering Team in Great Lakes Region
05/30/2025 | UyemuraAndrew Jin has joined Uyemura’s Engineering Team as Technical Service Engineer for the Midwest. Jin was formerly with Sensient Technologies, Flavors and Extracts Division, where his focus was CO2 emissions and water quality; he also did capital project work with production equipment.
Defining the Ideal PCB Design Data Output
05/27/2025 | Stephen V. Chavez, Siemens EDAAt the heart of delivering successful, manufacturable printed circuit boards lies a vital question: What should your design data output package include to best support manufacturing? The answer: It depends. There are many factors to consider regarding the specific category you’re designing for—such as mil/aero, space, medical, and commercial. Other factors that need to be considered are requirements and engineering intent.