A Battery Revolution in Motion
November 30, 2015 | CRNSEstimated reading time: 4 minutes
The first prototype of a sodium-ion battery has just been revealed by the RS2E, a French network bringing together researchers and industrial actors. This technology, inspired by the lithium-ion batteries already used in portable computers and electric vehicles, could lead to the mass storage of intermittent renewable energy sources.
The announcement should cause a stir in the highly competitive world of batteries. French researchers from the RS2E network1 today revealed the first prototype of the sodium-ion "18650" battery, a standard format used notably in portable computers. The information may not sound exciting to non-specialists... Yet scientists across the globe, including the US, Japan, the UK, and Israel, are working on this technology—which today is considered the most serious alternative to the lithium-ion batteries that equip practically all portable electronic devices (portable computers, tablets, smartphones...)—and are beginning to take a serious look at electric vehicles. The battery used for Tesla cars, for example, is nothing more than the combination of several thousand "18650" lithium-ion batteries.
"The sodium-ion battery unveiled today is directly inspired by lithium-ion technology," explains Jean-Marie Tarascon, the French battery "guru" who is a solid-state chemist at the CNRS, and professor at the Collège de France.2 Like lithium ions, sodium ions "travel" from one electrode to another, during the course of charging and discharging cycles, and they do so without in any way modifying the "host materials" located at each electrode, as the latter take the form of crystalline structures the ions can smoothly enter into... Its format, called "18650," indicates that it is presented in the form of a cylinder, with a diameter of 1.8 centimeters and a height of 6.5 centimeters.
Sodium's incredible comeback
For the moment, its creators have not disclosed the composition of the materials wrapped around the two electrodes of their sodium-ion battery—a trade secret. However, the performance of the prototype presented today is better known. With 90 watt-hours/kilogram, "its energy density (the quantity of energy that can be stored per kilo of battery) is comparable to certain lithium-ion batteries, such as the Li-ion iron/phosphate battery," points out Loïc Simonin, a researcher at LITEN, a CEA laboratory associated with the development of the prototype. And its life span (maximum number of charge-discharge cycles) exceeds 2000 cycles. These initial results are thus highly encouraging, all the more so as they can be improved.
When the electric vehicle market began to develop, we feared a surge in lithium prices.
Considered desirable objects today, sodium batteries have nevertheless come a long way. In the late 1980s, this technology had in fact been set aside in favor of lithium, whose superiority seemed obvious to all: thanks to a voltage of 3.5 V, lithium in theory provides the most energy. Being three times lighter than sodium ions, lithium ions also make it possible to produce very lightweight batteries, an undeniable asset when it comes to portable electronics. Lithium's only disadvantage is its (relative) rareness, and the fact that it is only found in a few specific locations (Columbia, Chile, China, etc.).
Page 1 of 2
Suggested Items
2025 ASEAN IT Spending Growth Slows to 5.9% as AI-Powered IT Expansion Encounters Post-Boom Normalization
06/26/2025 | IDCAccording to the IDC Worldwide Black Book: Live Edition, IT spending across ASEAN is projected to grow by 5.9% in 2025 — down from a robust 15.0% in 2024.
DownStream Acquisition Fits Siemens’ ‘Left-Shift’ Model
06/26/2025 | Andy Shaughnessy, I-Connect007I recently spoke to DownStream Technologies founder Joe Clark about the company’s acquisition by Siemens. We were later joined by A.J. Incorvaia, Siemens’ senior VP of electronic board systems. Joe discussed how he, Rick Almeida, and Ken Tepper launched the company in the months after 9/11 and how the acquisition came about. A.J. provides some background on the acquisition and explains why the companies’ tools are complementary.
United Electronics Corporation Advances Manufacturing Capabilities with Schmoll MDI-ST Imaging Equipment
06/24/2025 | United Electronics CorporationUnited Electronics Corporation has successfully installed the advanced Schmoll MDI-ST (XL) imaging equipment at their advanced printed circuit board facility. This significant technology investment represents a continued commitment to delivering superior products and maintaining their position as an industry leader in precision PCB manufacturing.
Insulectro & Dupont Host Technology Symposium at Silicon Valley Technology Center June 25
06/22/2025 | InsulectroInsulectro, the largest distributor of materials for use in the manufacture of PCBs and printed electronics, and DuPont, a major manufacturer of flex laminates and chemistry, invite fabricators, OEMS, designers, and engineers to attend an Innovation Symposium – Unlock the Power - this Wednesday, June 25, at DuPont’s Silicon Valley Technology Center in Sunnyvale, CA.
OKI, NTT Innovative Devices Establish Mass Production Technology for High-Power Terahertz Devices by Heterogeneous Material Bonding
06/21/2025 | BUSINESS WIREOKI, in collaboration with NTT Innovative Devices Corporation, has established mass production technology for high-power terahertz devices using crystal film bonding (CFB) technology for heterogeneous material bonding to bond indium phosphide (InP)-based uni-traveling carrier photodiodes (UTC-PD) onto silicon carbide (SiC) with excellent heat dissipation characteristics for improved bonding yields.