Nanosensors on the Alert for Terrorist Threats
November 1, 2016 | Moscow Institute of Physics and TechnologyEstimated reading time: 1 minute

Scientists from the Semenov Institute of Chemical Physics of the Russian Academy of Sciences (ICP RAS) and the Moscow Institute of Physics and Technology (MIPT) have demonstrated that sensors based on binary metal oxide nanocomposites are sensitive enough to identify terrorist threats and detect environmental pollutants. The results of their study have been published in Sensors and Actuators B: Chemical ("The mechanisms of sensory phenomena in binary metal-oxide nanocomposites").
A schematic representation of a binary sensor based on two metal oxides, with the nanoparticles of the catalytically active component (1) in yellow and the nanoparticles of the electron donor component (2) represented by the unshaded circles.
Due to rapid industrial growth and the degradation of the environment, there is a growing need for the development of highly effective and selective sensors for pollutant detection. In addition, gas sensors could also be used to monitor potential terrorist threats.
“Choosing the right sensor composition can make a device at least ten times more effective and enable an exceptionally fast response, which is crucial for preventing terrorist attacks,” says Prof. Leonid Trakhtenberg of the Department of Molecular and Chemical Physics at MIPT, who is the leader of the research team and the head of the Laboratory of Functional Nanocomposites at ICP RAS.
According to the research findings, the most promising detection systems are binary metal oxide sensors, in which one component provides a high density of conductive electrons and another is a strong catalyst.
A mixed system of that kind has the two necessary components for effective gas detection, viz., an electron donor and a substance “accommodating” the reaction. An additional factor contributing to faster sensor response is the formation of chemisorption centers, i.e., the chemically active spots on the nanocrystals that facilitate gas molecule adsorption.
“We are planning further research into the possibilities for sensor design presented by the multicomponent metal oxide nanocomposites incorporating nanofibers. The development of new effective sensor compositions will be based on a reasonably balanced approach involving both the experimental tests and the advancement of our theoretical understanding of the sensing mechanisms,” comments Prof. Trakhtenberg.
A rather promising approach to the development of new gas detection systems is the use of “core–shell type” composite metal oxide nanofibers, where the “core” and the “shell” are composed of two different oxides.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Trouble in Your Tank: Implementing Direct Metallization in Advanced Substrate Packaging
09/15/2025 | Michael Carano -- Column: Trouble in Your TankDirect metallization systems based on conductive graphite are gaining popularity throughout the world. The environmental and productivity gains achievable with this process are outstanding. Direct metallization reduces the costs of compliance, waste treatment, and legal issues related to chemical exposure. A graphite-based direct plate system has been devised to address these needs.
Curtiss-Wright Selected by Rheinmetall to Provide Turret Drive Stabilization System for the KF51 Panther Main Battle Tank
08/11/2025 | BUSINESS WIRECurtiss-Wright announced it has been selected by Rheinmetall Landsysteme Germany (RLS) to provide its modular turret drive stabilization system (TDSS) technology in support of the KF51 Panther Main Battle Tank (MBT).
European Global Mobile Artillery Rocket System Launcher Proves Capability with First-Ever Firing
08/04/2025 | Lockheed MartinLockheed Martin and Rheinmetall, partners in the Global Mobile Artillery Rocket System (GMARS) program, successfully conducted the first live fire of the GMARS launcher, demonstrating its capability to launch GMLRS rockets.
Rheinmetall Expands Local Production Activities in Romania
07/28/2025 | RheinmetallRheinmetall has established a comprehensive local production network in Romania, encompassing both its own companies in the country and new partnerships with Romanian companies.
STMicroelectronics, Metalenz Sign a New License Agreement to Accelerate Metasurface Optics Adoption
07/14/2025 | STMicroelectronicsSTMicroelectronics, a global semiconductor leader serving customers across the spectrum of electronics applications and Metalenz, the pioneer of metasurface optics, announced a new license agreement.