New Technology Could Help Track Firefighters for Safety
December 20, 2016 | NASAEstimated reading time: 4 minutes

In 1999, six career firefighters lost their lives responding to a five-alarm fire. They were part of a group of 73 dispatched to a smoke-filled warehouse in Worcester, Massachusetts. Lost inside the building’s tight corners, they were unable to find an exit before running out of oxygen.
Avoiding a tragedy like that has been a technical challenge for decades. In the outdoors, firefighters can use GPS to track one another, and radios to stay in communication. But when they move into a steel and concrete building, these technologies suddenly become unreliable.
A research team at NASA’s Jet Propulsion Laboratory in Pasadena, California, has developed a tracking system that could be a game-changer for firefighter safety. The team has been demonstrating the system, called POINTER (Precision Outdoor and Indoor Navigation and Tracking for Emergency Responders), for national and regional leaders in the first-responder community. The tracking technology could also benefit search-and-rescue teams in industrial or military contexts.
In August, POINTER was successfully demonstrated for top leadership at the Department of Homeland Security (DHS) Science and Technology Directorate, which has funded its development.
“To this day, the ability to track and locate first responders is a number one priority for disaster agencies across the country,” said Greg Price, DHS First Responder Technologies Division director. “It's truly a Holy Grail capability that doesn't exist today. If the POINTER project continues along its current path of success, first responders will be safer in the future.” Price observed the demo, along with DHS Under Secretary for Science and Technology Reginald Brothers and Deputy Under Secretary Robert Griffin. In September, representatives from fire departments across the U.S. visited JPL for a demonstration of POINTER. The tracking challenge was top of mind for Andrew Wordin, a battalion chief with the Los Angeles Fire Department: just weeks before, a firefighter became lost in a building after a roof gave way under him.
“They immediately declared a mayday,” Wordin said. “As soon as that happens, everything stops. All radio traffic stops. All incident management stops.”
Everyone’s job becomes finding that lost firefighter and ensuring his safety. Wordin called the POINTER demo “very exciting,” saying it showed promise for addressing the tracking problem inside of buildings.
The science of waves and fields
POINTER is both a technological and a mathematical breakthrough. JPL’s Darmindra Arumugam solved a problem researchers had been looking at since the 1970s.
Most of that research has focused on radio waves, which have the advantage of propagating energy over long distances. That’s made them ideal for communications and sensory technologies like radar. But they’re also notoriously unpredictable indoors: they ricochet off walls and won’t penetrate far underground. This is why you might lose your phone signal when you enter a steel-reinforced building or walk down to a basement.
Instead, Arumugam started looking at electromagnetic fields -- quasistatic fields, to be exact. These fields have been largely overlooked by researchers because they have short ranges. They’re limited to just a few hundred yards, or meters, but they don’t behave like waves. They can get around walls, offering increased non-line-of-sight capabilities.
The fields can also be tweaked to different sizes and wavelengths. Whereas waves represent energy in constant motion over time, fields can be stationary, or can change so slowly that they appear stationary (known as quasi-stationary or quasi-static). They can even be used to sense the different orientations of devices.
That last part is important. A tracking device emitting a quasi-static field would tell a receiver where it was in space, plus which way it was facing. It could tell a team commander whether a firefighter is crawling along the ground or is stationary, facing down on the floor -- suggesting that person may have stopped moving.
All of this involves complicated mathematics. Arumugam developed the theory, technique and algorithms that can analyze both the electrical and the magnetic components of quasistatic fields. These algorithms are the key to being able to interpret the quasistatic fields and their signaling.
Page 1 of 2
Suggested Items
Microchip Expands Space-Qualified FPGA Portfolio with New RT PolarFire® Device Qualifications and SoC Availability
07/10/2025 | MicrochipContinuing to support the evolving needs of space system developers, Microchip Technology has announced two new milestones for its Radiation-Tolerant (RT) PolarFire® technology: MIL-STD-883 Class B and QML Class Q qualification of the RT PolarFire RTPF500ZT FPGA and availability of engineering samples for the RT PolarFire System-on-Chip (SoC) FPGA.
Infineon Advances on 300-millimeter GaN Manufacturing Roadmap as Leading Integrated Device Manufacturer (IDM)
07/10/2025 | InfineonAs the demand for gallium nitride (GaN) semiconductors continues to grow, Infineon Technologies AG is poised to capitalize on this trend and solidify its position as a leading Integrated Device Manufacturer (IDM) in the GaN market.
Bell to Build X-Plane for Phase 2 of DARPA Speed and Runway Independent Technologies (SPRINT) X-Plane Program
07/09/2025 | Bell Textron Inc.Bell Textron Inc., a Textron Inc. company, has been down-selected for Phase 2 of Defense Advanced Research Projects Agency (DARPA) Speed and Runway Independent Technologies (SPRINT) X-Plane program with the objective to complete design, construction, ground testing and certification of an X-plane demonstrator.
2025 ASEAN IT Spending Growth Slows to 5.9% as AI-Powered IT Expansion Encounters Post-Boom Normalization
06/26/2025 | IDCAccording to the IDC Worldwide Black Book: Live Edition, IT spending across ASEAN is projected to grow by 5.9% in 2025 — down from a robust 15.0% in 2024.
DownStream Acquisition Fits Siemens’ ‘Left-Shift’ Model
06/26/2025 | Andy Shaughnessy, I-Connect007I recently spoke to DownStream Technologies founder Joe Clark about the company’s acquisition by Siemens. We were later joined by A.J. Incorvaia, Siemens’ senior VP of electronic board systems. Joe discussed how he, Rick Almeida, and Ken Tepper launched the company in the months after 9/11 and how the acquisition came about. A.J. provides some background on the acquisition and explains why the companies’ tools are complementary.