Additive Manufacturing: A New Twist for Stretchable Electronics?
January 4, 2017 | Missouri University of Science and TechnologyEstimated reading time: 3 minutes

Electronic components that can be elongated or twisted – known as “stretchable” electronics – could soon be used to power electronic gadgets, the onboard systems of vehicles, medical devices and other products. And a 3-D printing-like approach to manufacturing may help make stretchable electronics more prevalent, say researchers at Missouri University of Science and Technology.
New bendable electronic devices like the one pictured above could become more common in the future. Photo by John Rogers, University of Illinois, courtesy of the National Science Foundation.
Writing in the January 2017 edition of the journal Micromachines, Missouri S&T researchers assess the current state of the emerging field of stretchable electronics, focusing on a type of conductor that can be built on or set into the surface of a polymer known as elastomer.
These conductors could one day replace the rigid, brittle circuit board that powers many of today’s electronic devices. They could be used, for example, as wearable sensors that adhere to the skin to monitor heart rate or brain activity, as sensors in clothing or as thin solar panels that could be plastered onto curved surfaces.
Key to the future of stretchable electronics is the surface, or substrate. Elastomer, as its name implies, is a flexible material with high elasticity, which means that it can be bent, stretched, buckled and twisted repeatedly with little impact on its performance.
One challenge facing this class of stretchable electronics involves “overcoming mismatches” between the flexible elastomer base and more brittle electronic conductors, the researchers explain in their paper, “Materials, Mechanics, and Patterning Techniques for Elastomer-Based Stretchable Conductors” (Micromachines 2017, 8(1), 7).
“Unique designs and stretching mechanics have been proposed to harmonize the mismatches and integrate materials with widely different properties as one unique system,” writes the research team, which is led by Dr. Heng Pan, assistant professor of mechanical and aerospace engineering at Missouri S&T.
A relatively new manufacturing technique known as additive manufacturing may help resolve this issue, Pan says.
Additive manufacturing is a process that allows manufacturers to create three-dimensional objects, layer by layer – much like 3-D printing, but with metals, ceramics or other materials. In their paper, the researchers suggest that additive manufacturing could be used to “print” very thin layers of highly conductive materials onto an elastomer surface.
“With the development of additive manufacturing, direct writing techniques are showing up as an alternative to the traditional subtractive patterning methods,” the S&T researchers say.
Subtractive approaches include photolithography, which is commonly used to manufacture semiconductors.
Pan and his colleagues see additive manufacturing as a relatively economical approach to creating these new devices. At Missouri S&T, they are testing an approach that Pan calls “direct aerosol printing.” The process involves spraying a conductive material and integrating with a stretchable substrate to develop sensors that can be placed on skin.
“With the increase of complexity and resolution of devices, higher requirements for patterning techniques are expected,” they write. “Direct printing, as an additive manufacturing method, would satisfy such requirements and offer low cost and high speed in both prototyping and manufacturing. It might be a solution for cost-effective and scalable fabrication of stretchable electronics.”
Yet further challenges must be addressed before stretchable electronics become widely used as components in consumer electronics, medical devices or other fields, the researchers say. These challenges include the development of stretchable batteries that can store energy and the need to ensure that stretchable electronics and the malleable surfaces they’re built upon perform and age well together.
Nevertheless, Pan and his colleagues are optimistic for the future of stretchable electronics. They foresee a growth in the types of materials that could be used as efficient conductors of electricity and as flexible surfaces on which to build stretchable electronics.
Suggested Items
Real Time with... IPC APEX EXPO 2025: Improving the Electronics Industry With Advanced Packaging
04/30/2025 | Real Time with...IPC APEX EXPODevan Iyer, the Chief Strategist for Advanced Packaging at IPC, shares insights from his recent presentation at the EMS Leadership Summit. The discussion covers the importance of understanding market segments in IoT, power electronics, and high-performance computing. EMS companies are encouraged to specialize, invest wisely, and collaborate to meet customer needs.
Rogers Reports Q1 2025 Results
04/30/2025 | Rogers CorporationNet sales of $190.5 million decreased 0.9% versus the prior quarter. Advanced Electronics Solutions (AES) net sales increased by 1.8% primarily related to higher ADAS and aerospace and defense sales, partially offset by lower EV/HEV and industrial sales. Elastomeric Material Solutions (EMS) net sales decreased by 4.3% primarily from a seasonal decline in portable electronics sales and lower EV/HEV sales, partially offset by higher general industrial sales.
Kasuo Electronics Launches Advanced Testing Laboratory to Strengthen Global Supply Chain Quality Assurance
04/29/2025 | BUSINESS WIREKasuo Electronics Co., Ltd, a globally recognized trader of electronic components, has officially operationalized its state-of-the-art testing laboratory.
KOKI Expands U.S. Sales Coverage with Multiple New Representatives
04/29/2025 | KOKIKOKI, a global leader in advanced soldering materials and process optimization services, is pleased to announce the expansion of its U.S. sales network with the addition of three new manufacturers’ representative firms: Assembled Product Specialists, Diversitech Reps Inc., and Eagle Electronics.
Real Time with... IPC APEX EXPO 2025: The Role of AI in Advanced Packaging
04/30/2025 | Real Time with...IPC APEX EXPOIn a follow-up to his keynote, Dr. Ahmad Bahai, discusses the critical intersection of advanced packaging, computing, and AI in semiconductor innovation with Nolan Johnson and Devan Iyer. He emphasizes the need for new approaches to handle the data economy and highlights AI's role in optimizing electronics manufacturing. The conversation covers challenges in power and thermal management, the impact of AI on EDA tools, and bio-inspired innovations. Predictions about future trends point towards increased efficiency in design and manufacturing.