UAV Performs First Ever Perched Landing Using Machine Learning Algorithms
January 12, 2017 | University of BristolEstimated reading time: 1 minute
The very first unmanned aerial vehicle (UAV) to perform a perched landing using machine learning algorithms has been developed in partnership with the University of Bristol and BMT Defence Services (BMT). The revolutionary development of a fixed wing aircraft that can land in a small or confined space has the potential to significantly impact intelligence-gathering and the delivery of aid in a humanitarian disaster.
BMT, a subsidiary of BMT Group Ltd, and the University of Bristol have demonstrated how the combination of a morphing wing UAV and machine learning can be used to generate a trajectory to perform a perched landing on the ground. The UAV has been tested at altitude to validate the approach and the team are working towards a system that can perform a repeatable ground landing.
Current UAVs are somewhat restrictive in that they have fixed and rigid wings, which reduces the flexibility in how they can fly. The primary goal of the work was to look at extending the operation of current fixed wing UAVs by introducing morphing wing structures inspired by those found in birds. To control these complex wing structures, BMT utilised machine learning algorithms to learn a flight controller using inspiration from nature.
Simon Luck, Head of Information Services and Information Assurance at BMT Defence Services, commented: “Innovation is at the heart of everything we do at BMT and R&D projects provide us with the opportunity to work with our partners to develop cutting edge capabilities that have the potential to revolutionise the way we gather information.”
Dr Tom Richardson, Senior Lecturer in Flight Mechanics in the Department of Aerospace Engineering at the University of Bristol, added: “The application of these new machine learning methods to nonlinear flight dynamics and control will allow us to create highly manoeuvrable and agile unmanned vehicles. I am really excited about the potential safety and operational performance benefits that these new methods offer.”
The 18-month research project was delivered as part of the Defence Science and Technology Laboratory’s (Dstl) Autonomous Systems Underpinning Research (ASUR) programme.
Suggested Items
FTG Announces Q2 2025 Financial Results
07/09/2025 | Globe NewswireFiran Technology Group Corporation announced financial results for the second quarter 2025. Revenue: Recorded at $48.7 million, a 25.6% increase over Q2 2024.
Moog Announces Acquisition of COTSWORKS
07/07/2025 | BUSINESS WIREMoog Inc., a worldwide designer, manufacturer and systems integrator of high-performance precision motion and fluid controls and control systems, announced the acquisition of COTSWORKS Inc., an aerospace and defense fiber optics transceiver component manufacturer, for a purchase price of $63 million.
S&K Aerospace Awarded Major Contract Under DLA Maritime Acquisition Advancement Program
07/02/2025 | BUSINESS WIRES&K Aerospace, LLC has been awarded a significant contract under the Defense Logistics Agency’s (DLA) Maritime Acquisition Advancement Program, managed by the U.S. Naval Supply Command - Weapon Systems Support (NAVSUP WSS) in Mechanicsburg, PA.
Green Circuits to Exhibit Full-Service Electronics Manufacturing Solutions at 2025 SMD Symposium
07/02/2025 | Green CircuitsGreen Circuits, a full-service Electronics Manufacturing Services (EMS) partner to leading OEMs, is pleased to announce its participation in the 2025 SMD Symposium, taking place August 5-7 at the Von Braun Center in Huntsville, Alabama.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
06/27/2025 | Nolan Johnson, I-Connect007While news outside our industry keeps our attention occupied, the big news inside the industry is the rechristening of IPC as the Global Electronics Association. My must-reads begins with Marcy LaRont’s exclusive and informative interview with Dr. John Mitchell, president and CEO of the Global Electronics Association. For designers, have we finally reached the point in time where autorouters will fulfill their potential?