-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueInner Layer Precision & Yields
In this issue, we examine the critical nature of building precisions into your inner layers and assessing their pass/fail status as early as possible. Whether it’s using automation to cut down on handling issues, identifying defects earlier, or replacing an old line...
Engineering Economics
The real cost to manufacture a PCB encompasses everything that goes into making the product: the materials and other value-added supplies, machine and personnel costs, and most importantly, your quality. A hard look at real costs seems wholly appropriate.
Alternate Metallization Processes
Traditional electroless copper and electroless copper immersion gold have been primary PCB plating methods for decades. But alternative plating metals and processes have been introduced over the past few years as miniaturization and advanced packaging continue to develop.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Strategies for Developing Copper Plating Systems
October 16, 2017 | Patty Goldman, I-Connect007Estimated reading time: 4 minutes
I met with Dr. Albert Angstenberger, global technology manager for metallization with MacDermid Enthone Electronics Solutions, while at SMTA International. He presented a most interesting paper on copper pillar plating systems that we hope to publish in The PCB Magazine sometime in the future.
Patty Goldman: Albert, I understand you presented a paper here on copper pillar plating systems. How was it received?
Albert Angstenberger: Yes, that’s correct. It went well. To some extent I think I overshot the audience, maybe the firework was too big, because to me it seemed like these people would be to some extent stunned.
Goldman: Tell me about the paper. What was it about?
Angstenberger: It was about copper plating, particularly the strategies, how we develop new plating chemistry for electroplating, copper metallization of printed circuit boards and organic substrates or silicons. Getting away the heat and coping with the speed.
Right now, we have merged MacDermid and Enthone, so at the end of the day we have combined our capabilities and our strengths. As far as metallization and copper plating is concerned, we're covering almost every aspect of interconnect technology—starting from the die, rerouting the die down to the printed circuit board and with all the intermediate steps. My paper was dealing with the copper plating of whatever kind of substrate.
So, it's all about our company's strategies, technical strategies, what we do to develop suitable plating chemistry for successfully copper-plating very tiny through-holes, and a very tiny bump-up to microscopic through-holes.
Goldman: Tell me more about the thermal management part of it.
Angstenberger: One of the two most important aspects is to get the heat away from the die, through the various substrates, through the printed circuit board and out into the environment. That's one aspect. The other aspect is to provide very fast interconnections—frequency. So, the shortest interconnections from the die through the substrate to the exterior to the interfaces without any major concerns, as far as parasitics are concerned, like undistorted signal propagation.
When I grew up in that industry, we did a lot of wire bonding. To some extent, it was a painful exercise because once you wire bond, in particular with high-frequency applications, you had to consider the signal losses or parasitic effects, like capacitance or inductance issues. Right now, our whole industry is in a very good technological position to provide very fast, very short tracks for signal propagation, as well as to get away the heat. This doesn’t just relate to the high-frequency applications but also to simple technological applications like LEDs, for instance.
Goldman: They make a lot of heat.
Angstenberger: Yes, they do. The hotter they get, the more they degrade over time. In my younger days, I would have called it the thermal suicide of an integrated circuit. Most of the interconnect applications are trying to get as much copper pillar or copper bump interconnects to cope with the heat, of course, and to cope with the high-frequency aspects.
Goldman: I find that very interesting. Tell me more about your background.
Angstenberger: I got started in the printed circuit industry in '83 with a small- to medium-sized enterprise in Germany called Leitron. There have been a couple of companies with that name. When we started, it was about 50−60% PCBs going into the computer business. In those days, there was an American company coming up to the market with the first, believe it or not, foldable laptop. It was a very easy catch, not very sophisticated. The company was named Conversion, and they were one of our first and biggest customers where we were providing two-layer, four-layer, even six-layer boards. Prior to that, more of our customers were military, defense, aerospace and space application.
Goldman: You were making the leading-edge boards at the time, right?
Angstenberger: Yes, in those days. I guess it was like '84, '85 when we were probably one of the first companies in the world doing blind and buried vias, sequential lamination. Of course, just to complete the orchestra we did copper-clad, metal cores, heavy metal copper, 0.3 millimeter, 0.5 millimeter metal cores being incorporated into the board.
After Leitron, I went to Hewlett-Packard on the German side in Boeblingen. When I joined HP, it was like 13 different global printed circuit shops. When I left HP, there was only one left, which was the Boeblingen site. Then I was freelancing for six years or so, working for mostly European big printed circuit shops helping with engineering, helping with troubleshooting and all that. It was in '98 when I joined the company Diehl, which is in defense. I was responsible for development marketing and sales of miniaturized mil spec computers.
And after that I joined Taconic, the PTFE laminate manufacturer for some nine years . I took one year off because I had my spine screwed together due to some kind of misalignment. Then about four years ago some headhunters grabbed me by the hair for MacDermid. I'm global technology manager for metallization, so I act as an interface between the customer’s new requirements and our applications, our R&D, etc. The easiest way to describe it is like I’m a spokesman.
Goldman: Well, that’s quite a career. Anything more about your paper or thermal management that you'd like to add?
Angstenberger: Not necessarily. What I was trying to provide people with is a thread about the strategy and how to get the heat away from the die through the environment. Also, how to improve electrical or signal characteristics. On the other hand, it was also to tell the people something about our strategies and what we do to provide very effective, well-functioning electroplating and copper plating products.
Goldman: Albert, thank you.
Angstenberger: You're welcome.
Suggested Items
Designers Notebook: Impact of Advanced Semiconductor Packaging on PCB Stackup
01/07/2025 | Vern Solberg -- Column: Designer's NotebookTo accommodate new generations of high I/O semiconductor packaging, printed circuit board fabrication technology has had to undergo significant changes in both the process methods and the criteria for base material selection and construction sequence (stackup). Many of the new high-function multi-core semiconductor package families require more terminals than their predecessors, requiring a significantly narrower terminal pitch. Interconnecting these very fine-pitch, high I/O semiconductors to the PCB is made possible by an intermediate element referred to as an interposer.
BOOK EXCERPT: The Printed Circuit Designer’s Guide to... High Performance Materials, Chapter 4
01/02/2025 | I-Connect007In Chapter 4, Michael Gay discusses the two main types of copper foil used for PCB boards today: electrodeposited (ED) foil and rolled annealed (RA) foil. He also explains the pros and cons of each, and provides an update of the latest innovations in copper foil technology.
Connect the Dots: Designing for Reality—Solder Mask and Legend
01/02/2025 | Matt Stevenson -- Column: Connect the DotsIn the previous episode of I-Connect007’s On the Line with… podcast, we discussed the strip, etch, and strip process. At this point, we have a functioning board, but we still need to protect the PCB from environmental effects and document the circuit components. This brings us to the solder mask and legend phase of production.
Global PCB Connections: Following DFM Rules Leads to Better Boards
12/18/2024 | Jerome Larez -- Column: Global PCB ConnectionsAs a PCB field applications engineer, ensuring smooth communication between PCB designers and fabricators is one of my frequent challenges. A critical part of that dialogue is design for manufacturing (DFM). Many designers, even experienced ones, often misunderstand or overlook important DFM considerations. They may confuse design rules with manufacturing minimums, leading to technically feasible designs that are difficult or costly to produce. In this column, I will clarify some common DFM guidelines and help designers understand the difference between “design rules” and “minimums” while sharing best practices that will simplify the production process and ensure the highest quality PCB.
Sayonara to the Last Standing Copper Foil Plant in North America
12/17/2024 | Marcy LaRont, I-Connect007In July 2021, PCB007 Magazine published an interview with Michael Coll and Chris Stevens of Nippon Denkai about the new acquisition by Nippon Denkai of the last-standing ED foil manufacturer in North America. The plant in Augusta, Georgia, was formerly owned by Oak Mitsui, Inc. and had been purchased by Nippon Denkai the previous March, after which significant investment was made with the expectation of providing more jobs.