-
-
News
News Highlights
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueThe Hole Truth: Via Integrity in an HDI World
From the drilled hole to registration across multiple sequential lamination cycles, to the quality of your copper plating, via reliability in an HDI world is becoming an ever-greater challenge. This month we look at “The Hole Truth,” from creating the “perfect” via to how you can assure via quality and reliability, the first time, every time.
In Pursuit of Perfection: Defect Reduction
For bare PCB board fabrication, defect reduction is a critical aspect of a company's bottom line profitability. In this issue, we examine how imaging, etching, and plating processes can provide information and insight into reducing defects and increasing yields.
Voices of the Industry
We take the pulse of the PCB industry by sharing insights from leading fabricators and suppliers in this month's issue. We've gathered their thoughts on the new U.S. administration, spending, the war in Ukraine, and their most pressing needs. It’s an eye-opening and enlightening look behind the curtain.
- Articles
- Columns
- Links
- Media kit
||| MENU - pcb007 Magazine
HDI’s Beneficial Influence on High-Frequency Signal Integrity
October 17, 2017 | Happy Holden, I-Connect007Estimated reading time: 1 minute

Introducing the Benefits of Microvias
The increasingly widespread use of finepitch ball-grid array (BGA), chip scale packaging (CSP), and other evolving technology form-factors means that new fabrication techniques must be used to create printed circuit boards (PCBs). In addition, extremely fast clock speeds and high signal bandwidths challenge systems designers to find better ways to overcome the negative effects of noise, radio frequency interference (RFI) and electro-magnetic interference (EMI) have on their product’s performance. Finally, increasingly restrictive cost targets are compounding problems associated with today’s smaller, denser, lighter, and faster systems.
Staying competitive and delivering the products people want means seeking out and embracing the best available technologies and design methodologies. The use of PCBs incorporating microvia circuit interconnects is currently one of the most viable solutions on the market (Figure 1). Adopting microvia technology means that products can use the newest, smallest, and fastest devices, meet stringent RFI/ EMI requirements, and keep pace with downward-spiraling cost targets.
What are Microvia Technologies?
Microvias are vias of 6-mils (150 microns) diameter or less. Their most typical use today is in blind and buried vias used to create interconnections through one dielectric layer within a PCB. Microvias are commonly used in blind via constructions where the outer layers of a multilayer PCB are connected to the next adjacent signal layer. Used in all forms of electronic products, they effectively allow for the cost effective fabrication of high-density assemblies.
The IPC has selected high-density interconnection structures (HDIS) as the term to refer to these various microvia technologies. This definition is by no means universal. The Japanese refer to any via drilled by lasers in a thin dielectric as a microvia.
To read the full version of this article which appeared in the October 2017 issue of The PCB Magazine, click here.
Suggested Items
The Global Electronics Association Releases IPC-8911: First-Ever Conductive Yarn Standard for E-Textile Application
07/02/2025 | Global Electronics AssociationThe Global Electronics Association announces the release of IPC-8911, Requirements for Conductive Yarns for E-Textiles Applications. This first-of-its-kind global standard establishes a clear framework for classifying, designating, and qualifying conductive yarns—helping to address longstanding challenges in supply chain communication, product testing, and material selection within the growing e-textiles industry.
IPC-CFX, 2.0: How to Use the QPL Effectively
07/02/2025 | Chris Jorgensen, Global Electronics AssociationIn part one of this series, we discussed the new features in CFX Version 2.0 and their implications for improved inter-machine communication. But what about bringing this new functionality to the shop floor? The IPC-CFX-2591 QPL is a powerful technical resource for manufacturers seeking CFX-enabled equipment. The Qualified Product List (QPL) helps streamline equipment selection by listing models verified for CFX compliance through a robust third-party virtual qualification process.
Advancing Aerospace Excellence: Emerald’s Medford Team Earns Space Addendum Certification
06/30/2025 | Emerald TechnologiesWe’re thrilled to announce a major achievement from our Medford, Oregon facility. Andy Abrigo has officially earned her credentials as a Certified IPC Trainer (CIT) under the IPC J-STD-001 Space Addendum, the leading industry standard for space and military-grade electronics manufacturing.
Magnalytix and Foresite to Host Technical Webinar on SIR Testing and Functional Reliability
06/26/2025 | MAGNALYTIXMagnalytix, in collaboration with Foresite Inc., is pleased to announce an upcoming one-hour Webinar Workshop titled “Comparing SIR IPC B-52 to Umpire 41 Functional & SIR Test Method.” This session will be held on July 24, 2025, and is open to professionals in electronics manufacturing, reliability engineering, and process development seeking insights into new testing standards for climatic reliability.
IPC Rebrands as Global Electronics Association: Interview With Dr. John W. Mitchell
06/22/2025 | Marcy LaRont, I-Connect007Today, following a major announcement, IPC is embracing the rapid advancement of technology with a bold decision to change its name to the Global Electronics Association. This name more accurately reflects the full breadth of its work and the modern realities of electronics manufacturing. In this exclusive interview, Global Electronics Association President and CEO Dr. John W. Mitchell shares the story behind the rebrand: Why now, what it means for the industry, and how it aligns with the organization’s mission.