-
- News
- Books
Featured Books
- smt007 Magazine
Latest Issues
Current IssueTechnical Resources
Key industry organizations–all with knowledge sharing as a part of their mission–share their technical repositories in this issue of SMT007 Magazine. Where can you find information critical to your work? Odds are, right here.
The Path Ahead
What are you paying the most attention to as we enter 2025? Find out what we learned when we asked that question. Join us as we explore five main themes in the new year.
Soldering Technologies
Soldering is the heartbeat of assembly, and new developments are taking place to match the rest of the innovation in electronics. There are tried-and-true technologies for soldering. But new challenges in packaging, materials, and sustainability may be putting this key step in flux.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - smt007 Magazine
The Vital Role of Solder Paste Printing in New Product Introduction
February 22, 2018 | Richard Barratt, JJS ManufacturingEstimated reading time: 3 minutes
Surface-mount assembly has a crucial role to play in the new product introduction (NPI) process for electronics manufacturing.
The high degree of automation within the SMT methodology offers a variety of advantages, from automatic correction of errors, to simpler and faster assembly, better mechanical performance, increased production rates and reduced labor costs.
The SMT assembly process for an electronics manufacturing services (EMS) provider can be broken down into four key stages:
- Solder paste printing
- Pick and place
- Oven profiling
- Automated optical inspection (AOI)
Depending on the complexity of the design, or your own outsourcing strategy, your product could pass through each of these processes in turn, or you may find that you omit a step or two.
In this first in a series of articles exploring SMT assembly, we highlight the specific attributes, and the vital importance, of the solder paste printing process for your NPI.
Working to Your Specifications
The first step for your EMS provider will be to analyze the PCB data that is specific to your order, to ensure that they select the required stencil thickness and the most suitable material.
Solder paste printing is the most common method of applying solder paste to a PCB. Accurate solder paste application is hugely important in avoiding assembly defects which can have a knock-on effect further down the production process. So, it is vital that this key stage is correctly managed and controlled by your EMS partner.
Solder paste is essentially powdered solder which has been suspended in a thick medium called flux. The flux acts as a kind of temporary adhesive, holding the components in place until the soldering process begins. Solder paste is applied to the PCB using a stencil (generally stainless steel, but occasionally nickel,) then once the solder is melted it forms an electrical/mechanical connection.
The thickness of the stencil is what determines the volume of solder applied. For some projects it may even be necessary to have several thicknesses in different areas within the one stencil (often referred to as a multi-level stencil).
Another key factor to consider in the solder printing process is paste release. The correct type of solder paste should be selected based upon the size of the apertures (or holes) within the stencil. If the apertures are very small, for example, then the solder paste may be more prone to sticking to the stencil and not adhering correctly to the PCB.
Controlling the rate of paste release however can be easily managed, either by making changes to the design of the aperture or by reducing the thickness of the stencil.
The type of solder paste that is used can also impact on the final print quality, so it is important to select the appropriate combination of solder sphere size and alloy for the project, and to ensure it is mixed to the correct consistency before use.
Ensuring Quality
Once the stencil has been designed and your EMS partner is ready to produce the first PCB, they will next want to consider machine settings.
Put simply, the flatter you can keep the PCB through the printing process, the better the final results will be. So, by fully supporting the PCB during the printing stage, either by the use of automated tooling pins or with a dedicated support plate, your EMS provider can eliminate the possibility of any defects such as poor paste deposit or smudging.
It's also important to consider the speed and pressure of the squeegees during the printing process. One solution can be to have one speed for the solder paste but to have varying degrees of pressure, based on the unique specifications of the PCB and the length of the squeegee.
Cleaning the stencils, both prior to and throughout production, will also be essential in ensuring quality control. Many automatic printing machines have a system that can be set to clean the stencil after a fixed number of prints which helps to avoid smudging, and prevents any blockages of the apertures.
Finally, too, the printers should have a built-in inspection system (such as Hawk-Eye optical inspection) which can be preset to monitor the presence of paste across the whole PCB after printing.
The solder paste printing process is a precise and detailed one which will have a significant part to play in the ultimate success of your new product. And, as this article highlights, a huge amount of detailed work is likely to take place behind the scenes before your EMS partner solders the first electronic component to a board.
This article originally appeared on the JJS Manufacturing blog, which can be found here.
Suggested Items
Dr. Jennie Hwang to Deliver Two PDCs at IPC APEX
02/04/2025 | Dr. Jennie HwangDr. Jennie Hwang, Chair of the AI Committee of National Academies/DoD AI study, Chair of National AI Institute of NSF, and Committee of Strategic Thinking for Engineering Research in the Era of Artificial Intelligence of NSF, brings broad-based information and insights through an integrated perspective to the AI course.
TopLine Bringing Answers, New Ideas to APEX 2025
02/04/2025 | TopLineTopLine® Corporation’s engineers will discuss groundbreaking technologies and product solutions at the upcoming IPC APEX EXPO 2025 this coming March 18-20 at the Anaheim Convention Center in California.
Solderstar to Present Advanced Profiling Solutions at IPC APEX EXPO 2025
02/04/2025 | SolderStarSolderstar, a leading provider of profiling solutions for the electronics manufacturing industry, will exhibit at IPC APEX EXPO 2025, which will take place March 18-20, 2025, at the Anaheim Convention Center in California.
Rehm Thermal Systems: Future Technologies for Coating, Dispensing and Vapour Phase Soldering Live at IPC APEX EXPO 2025
02/04/2025 | Rehm Thermal SystemsIPC APEX EXPO 2024, which takes place from 18 to 20 March at the Anaheim Convention Center in California, is the largest and most important trade fair for electronics manufacturing in North America.
YINCAE Launches UF 120LA
02/04/2025 | YINCAEYINCAE has introduced UF 120LA, a high-purity liquid epoxy underfill engineered for advanced electronics packaging. With exceptional flowability into 20μ gaps, UF 120LA eliminates cleaning processes, reducing costs and environmental impact while ensuring superior performance across applications like BGA, flip chip, WLCSP, and multi-chip modules.