-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueEngineering Economics
The real cost to manufacture a PCB encompasses everything that goes into making the product: the materials and other value-added supplies, machine and personnel costs, and most importantly, your quality. A hard look at real costs seems wholly appropriate.
Alternate Metallization Processes
Traditional electroless copper and electroless copper immersion gold have been primary PCB plating methods for decades. But alternative plating metals and processes have been introduced over the past few years as miniaturization and advanced packaging continue to develop.
Technology Roadmaps
In this issue of PCB007 Magazine, we discuss technology roadmaps and what they mean for our businesses, providing context to the all-important question: What is my company’s technology roadmap?
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Three New Mars2020 Rover Technologies: What Powers the “Body Parts” on the Mars2020 Rover?
March 15, 2018 | Thy-An Tran, Pioneer Circuits Inc.Estimated reading time: 3 minutes
About the Mars2020 Rover Mission
The Mars2020 Rover Mission [1], designed by JPL, is the next NASA Mars Exploration Program(2) mission that is planned to launch in 2020. Some goals of the mission include to check for past signs of life, to help prepare for manned Mars missions, and to collect soil samples of Mars back to Earth.
Figure 1: The Mars2020 Rover.
The rover design is like that of its predecessor, Curiosity, but with many more technological innovations. Let’s explore the different “body parts” of the Mars2020 Rover and how these parts are powered.
Part 1: “Neck and Head”
The part that looks and functions like the neck and head of the Mars2020 Rover is called the Pancam Mast Assembly. This mast gives the rover a human perspective of the Martian environment. The mast is about five feet tall, holding its cameras at eye-level view with a six-foot tall person. When the Rover is in motion at the beginning of the mission, the Pancam Mast Assembly will lay flat against the rover deck. When it is ready to be deployed, the mast rises and will stay like this for the duration of the mission.
Inside Look
What powers the Rover’s mast? For power to get to such a tall instrument while allowing it to fold down and lift, the Rover will use an extended length flex cable. To picture this, take your typical circuit board, stretch it out, make it bendable, and make it advanced and reliable enough to withstand the surface of Mars. The Mars2020 extended length flex will again be built by Pioneer Circuits, the company that built the extended length circuit boards for all the previous rovers: Curiosity, Spirit and Pathfinder.
Figure 2: In a selfie taken by Curiosity, a brown flex cable wraps around and goes up its mast. The Mars2020 Rover will have a similar design.
Part 2: “Eyes”
There are 23 eyes to be exact. The Mars2020 Rover will sport 23 different cameras: nine engineering cameras, seven science cameras, and seven entry, descent and landing cameras. The Rover’s cameras will allow it to record never-before-seen footage of Rover’s descent, navigate and avoid hazards, take 3D images, use lasers to take close-ups, analyze vaporized rock material, as well as use X-ray to identify chemical elements.
Inside Look
What powers the Rover’s cameras? We’ll look into the engineering cameras allowing the Rover to navigate, avoid hazards, and take images of samples. These cameras are powered by rigid-flex circuit boards. Rigid-flex circuit boards are extremely advanced, holding the power and durability of a rigid board as well as the flexibility and reliability of a flex board. The board inside the engineering camera of the Mars2020 has extreme technical and programmatic difficulty, and must be small and powerful enough to fit inside and power the advanced camera.
Figure 3: Engineering camera rigid-flex circuit board designed by Pioneer Circuits for the Mars2020 Rover. The final board will be removed from the surrounding green frame to be able to bend and fold into shape.
Part 3: “Arm and Hand”
The Mars2020 will be able to gather samples of rock and soil from the Martian environment. The seven-foot arm has shoulders, elbows and other joints to give it flexibility and the ability to hold objects like a human would. The arm will be able to load and unload samples from the Mars surface to be stored inside the Rover and returned to Earth on a future NASA mission.
Inside Look
The Mars2020 robotic arm has human-like movement characteristics due to the Force Torque Sensor (FTS) that was engineered by the Motiv Space Systems Team for the Rover. A Force Torque Sensor detects the different forces applied to the robot arm, giving the robot feedback so it can adapt its motion. This FTS system makes the arm’s assembly the most complex assembly ever integrated into a Mars rover arm.
Summary
All the new technology modules on the new Mars2020 rover, as well as all its predecessors, Spirit, Opportunity and Curiosity, required high-technology rigid-flex as well as extended-length, flex circuit technology for power and interconnectivity. Though rover technology will continue to become more and more advanced, the parts that power them will need to remain reliable and able to pack a lot of power
into a small, flexible circuit.
References
1. Mars2020 Rover Mission
2. NASA Mars Exploration Program
Thy-An Tran is marketing strategist for Pioneer Circuits Inc.
Suggested Items
Flexible Thinking: Rules of Thumb: A Word to the Wise
11/20/2024 | Joe Fjelstad -- Column: Flexible ThinkingIn the early days of electronics manufacturing—especially with PCBs—there were no rules. Engineers, scientists, and technicians largely felt their way around in the dark, making things up as they went along. There was a great deal of innovation, guessing, and testing to make sure that early guidelines and estimates were correct by testing them. Still, they frequently made mistakes.
All Flex Solutions Adds Talent to Flexible Circuit Facilities
11/14/2024 | All Flex SolutionsAll Flex Solutions is excited to welcome John Letourneau as our Director of Facilities and Maintenance at our Flexible Circuit Centers of Excellence!
BOOK EXCERPT: The Printed Circuit Designer’s Guide to... DFM Essentials, Chapter 2
11/14/2024 | I-Connect007 Editorial TeamThe guidelines offered in this book are based on both ASC recommendations and IPC standards with the understanding that some may require adjustment based on the material set, fabricator processes, and other design constraints. This chapter discusses panelization, placing PCBs on manufacturing panels, highlighting features like coupons, borders, and scoring to maximize material utilization and reduce costs, and detailing preferred panel sizes and modifications.
Flexible Circuit Technologies Announces Major Expansion of Capabilities & Resources
11/13/2024 | CNWFlexible Circuit Technologies (FCT), a global design and value add manufacturer of flexible circuits, heaters, and membrane switches based in Minneapolis, MN, announces the opening of FCT-Huizhou.
I-Connect007 Editor’s Choice: Five Must-Reads for the Week
11/08/2024 | Nolan Johnson, I-Connect007In our industry we work on solutions. This week, solutions are represented in these must-read choices. Solid state batteries make an appearance, as does LED imaging equipment at American Standard Circuits. SPEA’s AI-based optical inspection is here, as are Happy Holden’s recent article on one key engineering skill and news about a flagship R&D facility funded by the U.S. CHIPS Act.