Making Rusty Polymers for Energy Storage
April 2, 2018 | Washington University in St. LouisEstimated reading time: 1 minute
It’s called a nanoflower, but if you could brush your cheek against its microscopic petals, you would find them cool, hard and … rusty.
Image caption: This colored image depicts a poly (3,4-ethylenedioxythiophene) (PEDOT) nanoflower synthesized via hydrolysis-assisted vapor-phase polymerization using ethanol as a solvent. The blue color represents PEDOT, and the red color represents iron oxide species that serve as a scaffold and assist in the growth of PEDOT nanostructures in situ during synthesis. (Image: D’Arcy lab/Washington University)
Common rust forms the inner skeleton of these lovely and intricate nanostructures, while their outer layer is a kind of plastic.
Researchers at Washington University in St. Louis have developed a straightforward way to make this type of conducting polymer with high surface area that is likely to be useful for energy transfer and storage applications.
“Rust will always pose a challenge in Earth’s humid and oxygenated atmosphere,” said Julio M. D’Arcy, assistant professor of chemistry in Arts & Sciences and a member of the university’s Institute of Materials Science and Engineering. “Corrosion makes structures fragile and decreases the ability of components to function properly. But in our lab, we’ve learned how to control the growth of rust so that it can serve an important purpose.”
Conducting polymers rely on a combination of organic and inorganic materials — usually a core of metal and a shell of plastic — made in a single batch.
D’Arcy and his team reported on a new technique that combines vapor-phase synthesis with solution-based hydrolysis to build three-dimensional nanoflowers, two-dimensional nanoplates and one-dimensional nanofibers.
This work advances the understanding of the chemical mechanisms involved with depositing the rust and forming the polymer, which will allow scientists to more easily manipulate and engineer the structures of the materials they make.
“As chemists, my students and I are fascinated by conducting polymers because we can control their structure during synthesis,” D’Arcy said. “How much electricity the polymers conduct is a function of their chemical pathway and their number of charge carriers, both of which can be optimized during synthesis.”
As for the nanoflowers, D’Arcy said he will be sowing some new seeds soon. There are 16 stable phases of rust, all with different morphologies at the nanoscale — enough for a whole rusted garden.
Suggested Items
Ventec Strengthens Commitment to Halogen-Free PCB Manufacturing in Europe
06/11/2025 | Ventec International GroupVentec International Group, the PCB materials innovator, manufacturer, supplier and one-stop shop for copper clad laminates, prepregs, as well as process consumables and PCB manufacturing equipment has established volume inventory of halogen-free FR4.1 and FR15.1 PCB materials at its European hub in Germany.
ACCM Joins Polar’s Speedstack Material Partner Program
06/10/2025 | Polar InstrumentsAdvance Chip & Circuit Materials has recently joined the Polar Speedstack Material Partner Program to ease the inclusion of ACCM's innovative Celeritas build up materials into the PCB supply chain.
DuPont/Qnity Innovators in Semiconductor Materials Named 2025 Heroes of Chemistry
06/10/2025 | DuPontDuPont today announced that 13 of its current and former scientists and engineers have been named 2025 Heroes of Chemistry by the American Chemical Society (ACS) for an innovative program that progressed semiconductor lithography.
Ventec International Group Enters into a Fulfillment and Supply Agreement with Matrix and Launches Ventec Americas
06/09/2025 | Ventec International GroupVentec is excited to announce a new partnership with Matrix aimed at enhancing the fulfillment, value-added conversion, and distribution of PCB base materials across the North American market. This collaboration is set to significantly improve supply chain efficiency, and delivery performance for the company's North American customers.
Technica Expands into Emerging Printed Electronics and Advanced Coatings Markets
06/04/2025 | Technica USATechnica is expanding its product portfolio with Agfa’s advanced line of Orgacon conductive coatings. The Orgacon products are a natural complement to Technica’s existing solutions and will allow the company to deliver greater value to customers in these markets.