Making Rusty Polymers for Energy Storage
April 2, 2018 | Washington University in St. LouisEstimated reading time: 1 minute
It’s called a nanoflower, but if you could brush your cheek against its microscopic petals, you would find them cool, hard and … rusty.
Image caption: This colored image depicts a poly (3,4-ethylenedioxythiophene) (PEDOT) nanoflower synthesized via hydrolysis-assisted vapor-phase polymerization using ethanol as a solvent. The blue color represents PEDOT, and the red color represents iron oxide species that serve as a scaffold and assist in the growth of PEDOT nanostructures in situ during synthesis. (Image: D’Arcy lab/Washington University)
Common rust forms the inner skeleton of these lovely and intricate nanostructures, while their outer layer is a kind of plastic.
Researchers at Washington University in St. Louis have developed a straightforward way to make this type of conducting polymer with high surface area that is likely to be useful for energy transfer and storage applications.
“Rust will always pose a challenge in Earth’s humid and oxygenated atmosphere,” said Julio M. D’Arcy, assistant professor of chemistry in Arts & Sciences and a member of the university’s Institute of Materials Science and Engineering. “Corrosion makes structures fragile and decreases the ability of components to function properly. But in our lab, we’ve learned how to control the growth of rust so that it can serve an important purpose.”
Conducting polymers rely on a combination of organic and inorganic materials — usually a core of metal and a shell of plastic — made in a single batch.
D’Arcy and his team reported on a new technique that combines vapor-phase synthesis with solution-based hydrolysis to build three-dimensional nanoflowers, two-dimensional nanoplates and one-dimensional nanofibers.
This work advances the understanding of the chemical mechanisms involved with depositing the rust and forming the polymer, which will allow scientists to more easily manipulate and engineer the structures of the materials they make.
“As chemists, my students and I are fascinated by conducting polymers because we can control their structure during synthesis,” D’Arcy said. “How much electricity the polymers conduct is a function of their chemical pathway and their number of charge carriers, both of which can be optimized during synthesis.”
As for the nanoflowers, D’Arcy said he will be sowing some new seeds soon. There are 16 stable phases of rust, all with different morphologies at the nanoscale — enough for a whole rusted garden.
Suggested Items
J.A.M.E.S. Explores the Future of Additive Manufactured Electronics
02/18/2025 | Marcy LaRont, I-Connect007Andreas Salomon is chief scientist at J.A.M.E.S, a joint venture of Nano Dimension and HENSOLD. In this interview he discusses the evolving landscape of additively manufactured electronics, highlighting the integration of cutting-edge technologies, such as micro-dispensing and ink jetting. These technologies enhance capabilities in signal integrity and miniaturization. He also talks about the importance of sustainability, the need for standardized testing, and collaboration among industry leaders that will drive innovation and transform the future of electronics manufacturing through IPC’s standards development.
Sunny Kwok Joins Ventec as Technical Sales Representative for UK and EMEA
02/14/2025 | VentecVentec is pleased to announce the appointment of Sunny Kwok as Technical Sales Representative for UK and EMEA regions. Sunny will further enhance service support levels for Ventec full range of materials including non-reinforced resin coated copper and film products (thermal/Pro-bond), high speed/low loss (tec-speed) and Ventec’s full range of halogen free materials for high reliability applications.
Unveiling the Future: Insights on Next-Gen Megtron Materials
02/13/2025 | Marcy LaRont, I-Connect007In this interview from DesignCon, Jim Kenny, OEM business development manager at Panasonic, touches on next-generation Megtron materials and delves into the industry's growing demand for high-speed, low-loss laminate systems, particularly in light of the anticipated 224 gigabits per second technology. With a focus on material development and production timelines, Jim highlights the challenges and opportunities in meeting customer needs while also maintaining quality and supply chain stability. As Panasonic prepares for the evolving landscape, they remain committed to innovating in this competitive market.
DuPont to Discuss Development of EUV Photoresists at SPIE Advanced Lithography + Patterning Conference
02/13/2025 | DuPontDuPont today announced its participation in the 2025 SPIE Advanced Lithography + Patterning conference, taking place Feb. 24–28 in San Jose, California. DuPont will showcase its latest innovations through technical presentations focused on the development of photoresists for extreme ultraviolet (EUV) lithography and advancing sustainability in the design of lithographic materials.
IPC Hall of Fame Spotlight Series: Highlighting Doug Pauls
02/12/2025 | Dan Feinberg, Technology Editor, I-Connect007Over the years, IPC members who have contributed significantly to IPC and our industry have been awarded the IPC Raymond E. Pritchard Hall of Fame (HOF) Award. Though many early HOF members have passed away and are unknown to today’s IPC membership, their contributions still resonate. This special series on IPC Hall of Fame members provides a reminder of who was honored and why. As a bonus, for those who are still around, we get to find out what these talented individuals are up to today.