Making Rusty Polymers for Energy Storage
April 2, 2018 | Washington University in St. LouisEstimated reading time: 1 minute
It’s called a nanoflower, but if you could brush your cheek against its microscopic petals, you would find them cool, hard and … rusty.
Image caption: This colored image depicts a poly (3,4-ethylenedioxythiophene) (PEDOT) nanoflower synthesized via hydrolysis-assisted vapor-phase polymerization using ethanol as a solvent. The blue color represents PEDOT, and the red color represents iron oxide species that serve as a scaffold and assist in the growth of PEDOT nanostructures in situ during synthesis. (Image: D’Arcy lab/Washington University)
Common rust forms the inner skeleton of these lovely and intricate nanostructures, while their outer layer is a kind of plastic.
Researchers at Washington University in St. Louis have developed a straightforward way to make this type of conducting polymer with high surface area that is likely to be useful for energy transfer and storage applications.
“Rust will always pose a challenge in Earth’s humid and oxygenated atmosphere,” said Julio M. D’Arcy, assistant professor of chemistry in Arts & Sciences and a member of the university’s Institute of Materials Science and Engineering. “Corrosion makes structures fragile and decreases the ability of components to function properly. But in our lab, we’ve learned how to control the growth of rust so that it can serve an important purpose.”
Conducting polymers rely on a combination of organic and inorganic materials — usually a core of metal and a shell of plastic — made in a single batch.
D’Arcy and his team reported on a new technique that combines vapor-phase synthesis with solution-based hydrolysis to build three-dimensional nanoflowers, two-dimensional nanoplates and one-dimensional nanofibers.
This work advances the understanding of the chemical mechanisms involved with depositing the rust and forming the polymer, which will allow scientists to more easily manipulate and engineer the structures of the materials they make.
“As chemists, my students and I are fascinated by conducting polymers because we can control their structure during synthesis,” D’Arcy said. “How much electricity the polymers conduct is a function of their chemical pathway and their number of charge carriers, both of which can be optimized during synthesis.”
As for the nanoflowers, D’Arcy said he will be sowing some new seeds soon. There are 16 stable phases of rust, all with different morphologies at the nanoscale — enough for a whole rusted garden.
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Jiva Leading the Charge Toward Sustainable Innovation
09/30/2025 | Marcy LaRont, PCB007 MagazineEnvironmental sustainability in business—product circularity—is a high priority these days. “Circularity,” the term meant to replace “recycling,” in its simplest definition, describes a full circle life for electronic products and all their elements. The result is re-use or a near-complete reintroduction of the base materials back into the supply chain, leaving very little left for waste. For what cannot be reused productively, the ultimate hope is to have better, less harmful means of disposal and/or materials that can seamlessly and harmlessly decompose and integrate back into the natural environment. That is where Jiva and Soluboard come in.
Space Forge Inc. and United Semiconductors LLC Partner to Develop the Supply Chain for Space-grown Semiconductor Materials
09/29/2025 | Space Forge Inc.Space Forge Inc., the advanced materials company revolutionizing semiconductor manufacturing in space, has announced the signing of a strategic Memorandum of Understanding (MoU) with United Semiconductors LLC, a leading specialist in bulk crystal growth of III-V semiconductor compounds. The agreement formalizes the ongoing collaborative efforts that started over a year ago, marking a significant step forward in strengthening the partnership between the two companies.
U.S. Critical Materials, GreenMet Join Forces in Strategic Alliance for Gallium and Critical Mineral Independence
09/29/2025 | PRNewswireUS Critical Materials Corp., a leading rare earth exploration and process technology company, is proud to announce a strategic advisory alliance with GreenMet, a Washington, D.C.-based firm specializing in critical minerals strategy and financing.
Connect the Dots: Evolution of PCB Manufacturing—Lamination
10/02/2025 | Matt Stevenson -- Column: Connect the DotsWhen I wrote The Printed Circuit Designer's Guide to...™ Designing for Reality, it was not a one-and-done effort. Technology is advancing rapidly. Designing for the reality of PCB manufacturing will continue to evolve. That’s why I encourage designers to stay on top of the tools and processes used during production, to ensure their designs capitalize on the capabilities of their manufacturing partner.
Nordson Electronics Solutions Enables Seamless Integration of Actnano PFAS-Free Coatings With Asymtek Select Coat Conformal Coating Systems
09/23/2025 | Nordson Electronics SolutionsNordson Electronics Solutions, a global leader in reliable electronics manufacturing technologies, announces full compatibility of its industry-leading ASYMTEK conformal coating systems with actnano’s next-generation, PFAS-free materials.