Using 3D X-rays to Measure Particle Movement Inside Lithium Ion Batteries
May 23, 2018 | University of IllinoisEstimated reading time: 3 minutes
Lithium ion batteries have come a long way since their introduction in the late 1990s. They’re used in many everyday devices, such as laptop computers, mobile phones, and medical devices, as well as automotive and aerospace platforms, and others. However, lithium ion battery performance still can decay over time, may not fully charge after many charge/discharge cycles, and may discharge quickly even when idle. Researchers at the University of Illinois applied a technique using 3D X-ray tomography of an electrode to better understand what is happening on the inside of a lithium ion battery and ultimately build batteries with more storage capacity and longer life.
Put simply, when a lithium battery is being charged, lithium ions embed themselves into host particles that reside in the battery anode electrode and are stored there until needed to produce energy during the battery discharge. The most commonly used host particle material in commercial lithium ion batteries is graphite. The graphite particles expand as the lithium ions enter them during charging, and contract when the ions exit them during discharging.
“Every time a battery is charged, the lithium ions enter the graphite, causing it to expand by about 10 percent in size, which puts a lot of stress on the graphite particles,” said John Lambros, professor in the Department of Aerospace Engineering and director of the Advanced Materials Testing and Evaluation Laboratory (AMTEL) at U of I. “As this expansion-contraction process continues with each successive charge-discharge cycle of the battery, the host particles begin to fragment and lose their capacity to store the lithium and may also separate from the surrounding matrix leading to loss of conductivity.
“If we can determine how the graphite particles fail in the interior of the electrode, we may be able to suppress these problems and learn how to extend the life of the battery. So we wanted to see in a working anode how the graphite particles expand when the lithium enters them. You can certainly let the process happen and then measure how much the electrode grows to see the global strain—but with the X-rays we can look inside the electrode and get internal local measurements of expansion as lithiation progresses.”
The team first custom built a rechargeable lithium cell that was transparent to X-rays. However, when they made the functioning electrode, in addition to graphite particles, they added another ingredient to the recipe—zirconia particles.
“The zirconia particles are inert to lithiation; they don’t absorb or store any lithium ions,” Lambros said. “However, for our experiment, the zirconia particles are indispensable: they serve as markers that show up as little dots in the X-rays which we can then track in subsequent X-ray scans to measure how much the electrode deformed at each point in its interior.”
Lambros said internal changes in the volume are measured using a Digital Volume Correlation routine—an algorithm in a computer code that is used to compare the X-ray images before and after lithiation.
The software was created about 10 years ago by Mark Gates, a U of I computer science doctoral student co-advised by Lambros and by Michael Heath, who is in U of I’s Department of Computer Science. Gates improved upon existing DVC schemes by making some critical changes to the algorithm. Rather than only being able to solve very small-scale problems with a limited amount of data, Gates’ version incorporates parallel computations that run different parts of the program all at the same time and can produce results in a short time, over a large number of measurement points.
“Our code runs much faster and instead of just a few data points, it allows us to get about 150,000 data points, or measurement locations, inside the electrode,” Lambros said. “It also gives us an extremely high resolution and high fidelity.”
Lambros said there are probably only a handful of research groups worldwide that use this technique.
“Digital Volume Correlation programs are now available commercially, so they may become more common,” he said. “We’ve been using this technique for a decade now, but the novelty of this study is that we applied this technique that allows internal 3D measurement of strain to functioning battery electrodes to quantify their internal degradation.”
Testimonial
"Advertising in PCB007 Magazine has been a great way to showcase our bare board testers to the right audience. The I-Connect007 team makes the process smooth and professional. We’re proud to be featured in such a trusted publication."
Klaus Koziol - atgSuggested Items
Aircraft Wire and Cable Market to surpass USD 3.2 Billion by 2034
10/30/2025 | Global Market Insights Inc.The global aircraft wire and cable market was valued at USD 1.8 billion in 2024 and is estimated to grow at a CAGR of 5.9% to reach USD 3.2 billion by 2034, according to recent report by Global Market Insights Inc.
Honeywell Announces Updated Business Segment Structure Ahead Of Aerospace Spin-Off
10/28/2025 | HoneywellHoneywell announced its updated business segment structure ahead of the planned separation of its Aerospace Technologies business, expected in the second half of 2026, and its Solstice Advanced Materials business, expected to be completed on October 30, 2025.
Lockheed Martin Signs Strategic Partnership Framework with Korean Air
10/28/2025 | Lockheed MartinLockheed Martin is collaborating with Korean Air to explore opportunities to support the U.S. government’s (USG) Regional Sustainment Framework (RSF) initiative, as well as expand Maintenance, Repair, Overhaul & Upgrade (MROU) cooperation to third-country markets.
The Republic of Korea Selects L3Harris for Airborne Early Warning and Control Aircraft Program
10/20/2025 | BUSINESS WIREL3Harris Technologies has received a contract to deliver modified Bombardier Global 6500 airborne early warning and control (AEW&C) aircraft to the Republic of Korea Air Force.
Molex Announces Agreement to Acquire Smiths Interconnect
10/17/2025 | MolexMolex, a leading global electronics connectivity innovator, announced that it has signed an agreement to acquire Smiths Interconnect.