New Materials Architectures Sought to Cool Hypersonic Vehicles
December 24, 2018 | DARPAEstimated reading time: 1 minute

Hypersonic vehicles fly through the atmosphere at incredibly high speeds, creating intense friction with the surrounding air as they travel at Mach 5 or above—five times faster than sound travels. Developing structures that can withstand furnace-like temperatures at such high speeds is a technical challenge, especially for leading edges that bear the brunt of the heat.
To address this thermal challenge, DARPA recently announced its Materials Architectures and Characterization for Hypersonics (MACH) program. The MACH program seeks to develop and demonstrate new design and material solutions for sharp, shape-stable, cooled leading edges for hypersonic vehicles.
“For decades people have studied cooling the hot leading edges of hypersonic vehicles but haven’t been able to demonstrate practical concepts in flight,” said Bill Carter, program manager in DARPA’s Defense Sciences Office. “The key is developing scalable materials architectures that enable mass transport to spread and reject heat. In recent years we’ve seen advances in thermal engineering and manufacturing that could enable the design and fabrication of very complex architectures not possible in the past. If successful, we could see a breakthrough in mitigating aerothermal effects at the leading edge that would enhance hypersonic performance.”
The MACH program will comprise two technical areas. The first area aims to develop and mature fully integrated passive thermal management system to cool leading edges based on scalable net-shape manufacturing and advanced thermal design. The second technical area will focus on next-generation hypersonic materials research, applying modern high-fidelity computation capabilities to develop new passive and active thermal management concepts, coatings and materials for future cooled hypersonic leading edge applications.
The MACH program seeks expertise in thermal engineering and design, advanced computational materials development, architected materials design, fabrication and testing (including net shape fabrication of high temperature metals, ceramics and their composites), hypersonic leading-edge design and performance, and advanced thermal protection systems.
Suggested Items
Siemens, TSMC Extend Collaboration to Drive Semiconductor Design Innovation
04/25/2025 | SiemensSiemens Digital Industries Software announced that the company has deepened longstanding collaboration with TSMC to drive innovation in semiconductor design and integration, enabling mutual customers to tackle the challenges of next-generation technologies.
Ansys Strengthens Collaboration with TSMC on Advanced Node Processes Certification and 3D-IC Multiphysics Design Solutions
04/24/2025 | PRNewswireThrough continued collaboration with TSMC, Ansys announced enhanced AI-assisted workflows for radio frequency (RF) design migration and photonic integrated circuits (PICs), and new certifications for its semiconductor solutions. Together,
Autodesk Donates $4.3 Million to Cornell University to Prepare students for an AI-powered future
04/24/2025 |Autodesk announced a $4.3 million gift to Cornell University’s College of Engineering and College of Architecture, Art, and Planning (AAP) to help prepare students for the future of work in an increasingly AI-driven world. The investment will fund a new Autodesk Cornell Engineering Design and Make Space in Upson Hall.
Driving Sustainability in PCB Design
04/24/2025 | Marcy LaRont, I-Connect007Filbert (Fil) Arzola is an electrical engineer at Raytheon. He’s smart, entertaining, and passionate about PCB design. As it turns out, he’s also passionate about “Mother Earth,” as he calls her. Born and raised in Southern California, he freely admits that he turns the water off when he brushes his teeth and yells at his brother for throwing batteries in the garbage. But when looking at the issue of sustainability and PCB design, he urges his audiences to ponder what sustainability looks like. Can PCB designers, he asks, make any impact on sustainability at all?
Real Time with... IPC APEX EXPO: Silicon Geometry's Signal Integrity Impact on PCBs
04/24/2025 | Marcy LaRont, I-Connect007At IPC APEX EXPO 2025, Kris Moyer addressed the importance of understanding the impact of silicon geometry reduction on signal integrity and PCB performance. Kris says signal integrity considerations are necessary for so many designs today, regardless of clock frequency. He discusses valuable insights from attendees regarding embedded resistor technology and the effects of radiation on smaller silicon features in aerospace applications.