Hybrid Material May Outperform Graphene in Several Applications
March 1, 2019 | Agência FAPESPEstimated reading time: 2 minutes
Materials that are hybrid constructions (combining organic and inorganic precursors) and quasi-two-dimensional (with malleable and highly compactable molecular structures) are on the rise in several technological applications, such as the fabrication of ever-smaller optoelectronic devices.
Image Caption: A structure comprising a molybdenum disulfide monolayer on an azobenzene substrate could be used to build a highly compactable and malleable quasi-two-dimensional transistor powered by light (image: atomistic representations of molybdenum disulfide monolayer with an azobenzene molecule in its trans and cis isomers/ Physical Review B)
An article published in the journal Physical Review B describes a study in this field resulting from the doctoral research of Diana Meneses Gustin and Luís Cabral, both supervised by Victor Lopez Richard, a professor at the Federal University of São Carlos (UFSCar) in Brazil. Cabral was cosupervised by Juarez Lopes Ferreira da Silva, a professor at the University of São Paulo’s São Carlos Chemistry Institute (IQSC-USP). Gustin was supported by FAPESP via a doctoral scholarship and a scholarship for a research internship abroad.
“Gustin and Cabral explain theoretically the unique optical and transport properties resulting from interaction between a molybdenum disulfide monolayer (inorganic substance MoS2) and a substrate of azobenzene (organic substance C12H10N2),” Lopez Richard told Agência FAPESP.
Illumination makes the azobenzene molecule switch isomerization and transition from a stable trans spatial configuration to a metastable cis form, producing effects on the electron cloud in the molybdenum disulfide monolayer. These effects, which are reversible, had previously been investigated experimentally by Emanuela Margapoti in postdoctoral research conducted at UFSCar and supported by FAPESP.
Gustin and Cabral developed a model to emulate the process theoretically. “They performed ab initio simulations (computational simulations using only established science) and calculations based on density functional theory (a quantum mechanical method used to investigate the dynamics of many-body systems). They also modeled the transport properties of the molybdenum disulfide monolayer when disturbed by variations in the azobenzene substrate,” Richard explained.
While the published paper does not address technological applications, the deployment of the effect to build a light-activated two-dimensional transistor is on the researchers’ horizon.
“The quasi two-dimensional structure makes molybdenum disulfide as attractive as graphene in terms of space reduction and malleability, but it has virtues that potentially make it even better. It’s a semiconductor with similar electrical conductivity properties to graphene’s and it’s more versatile optically because it emits light in the wavelength range from infrared to the visible region,” Richard said.
The hybrid molybdenum-disulfide-azobenzene structure is considered a highly promising material, but a great deal of research and development will be required if it is to be effectively deployed in useful devices.
Suggested Items
Argonne to Lead Two Microelectronics Research Projects Under U.S. Department of Energy Initiative
01/13/2025 | BUSINESS WIREThe U.S. Department of Energy’s (DOE) Argonne National Laboratory is managing two microelectronics studies that will support multidisciplinary codesign of hardware and software and enable processing of vast quantities of data at unprecedented speeds.
NASA’s Kennedy Marks New Chapter for Florida Space Industry
01/09/2025 | NASAThe future of research and technology at NASA’s Kennedy Space Center in Florida is expanding Wednesday, as Kennedy’s center director and charter members in the Florida University Space Research Consortium signed a memorandum of understanding in research and development to assist with missions and contribute to NASA’s Moon to Mars exploration approach.
EMS Providers Should ‘Plan Prudently’ in 2025
01/08/2025 | Nolan Johnson, SMT007 MagazineDennis Reed is a senior research analyst who specializes in electronics manufacturing at Edgewater Research, a leading research and market intelligence firm covering a mix of compute—CPU, GPU, memory, both flash and DRAM, and hard drive—and insights on components which includes broad line semiconductor, IP&E distribution, and channels.
Biden-Harris Administration Announces Arizona State University Research Park as Planned Site for Third CHIPS for America R&D Flagship Facility
01/08/2025 | U.S. Department of CommerceThe Department of Commerce and Natcast announced the Arizona State University (ASU) Research Park in Tempe, Arizona as the anticipated location for the third flagship CHIPS for America research and development (R&D) facility.
Biden-Harris Administration Awards SRC $285M for New CHIPS Manufacturing USA Institute for Digital Twins
01/07/2025 | U.S. Department of CommerceThe U.S. Department of Commerce announced that CHIPS for America awarded the Semiconductor Research Corporation Manufacturing Consortium Corporation (SRC) $285 million to establish and operate a CHIPS Manufacturing USA institute headquartered in Durham, North Carolina.