Ushering in Ultrafast Cluster Electronics
April 5, 2019 | Hokkaido UniversityEstimated reading time: 1 minute

A new computational method can help fast track the development of tiny, ultrafast electronic devices made from small clusters of molecules.
Hokkaido University researchers have developed a computational method that can predict how clusters of molecules behave and interact over time, providing critical insight for future electronics. Their findings, published in the journal Scientific Reports, could lead to the creation of a new field of science called cluster molecular electronics.
Single molecule electronics is a relatively new, rapidly progressing branch of nanotechnology using individual molecules as electronic components in devices. Now, Hiroto Tachikawa and colleagues at Hokkaido University in Japan have developed a computational approach that can predict how clusters of molecules behave over time, which could help launch a new field of study for cluster molecule electronics. Their approach combines two methods traditionally used for quantum chemical and molecular dynamic calculations.
They used their method to predict the changes in a computer-simulated cluster of benzene molecules over time. When light is applied to the T-shaped benzene clusters, they reorganize themselves into a single stack; an interaction known as pi-stacking. This modification from one shape to another changes the cluster’s electrical conductivity, making it act like an on-off switch. The team then simulated the addition of a molecule of water to the cluster and found that pi-stacking happened significantly faster. This pi-stacking is also reversible, which would allow switching back and forth between the on and off modes.
When light is applied to the T-shaped benzene cluster in their computer simulation, they reorganized themselves into a single stack, changing its electrical conductivity. The addition of a molecule of water made the stacking occur significantly faster. (Tachikawa H., et al. Scientific Reports, February 20, 2019)
In contrast, previous studies had shown that the addition of a molecule of water to a single molecule electronic device impedes its performance.
“Our findings could usher in a new field of study that investigates the electronic performance of different numbers, types and combinations of molecular clusters, potentially leading to the development of cluster molecule electronic devices,” Tachikawa commented.
Testimonial
"The I-Connect007 team is outstanding—kind, responsive, and a true marketing partner. Their design team created fresh, eye-catching ads, and their editorial support polished our content to let our brand shine. Thank you all! "
Sweeney Ng - CEE PCBSuggested Items
Marcy’s Musings: The Legislative Outlook: Helping or Hurting?
10/20/2025 | Marcy LaRont -- Column: Marcy's MusingsJust before we were ready to publish our October issue of PCB007 Magazine, some breaking news from the White House, unfortunately (but perfectly) parlayed into why the topic of this month’s issue has been so important to cover in great depth.
NOVOSENSE, UAES and Innoscience Advance Power Electronics for New Energy Vehicles
10/17/2025 | PRNewswireThe partnership focuses on developing next-generation intelligent integrated Gallium Nitride (GaN) products. Leveraging their combined expertise, the new devices will deliver more reliable GaN driving and protection features, enabling higher power density and paving the way for wider adoption in automotive systems.
Jabil Announces Board Transitions
10/17/2025 | JabilJabil Inc. announced that Executive Chairman of the Board of Directors Mark T. Mondello and Directors Kathleen A. Walters and Jamie Siminoff will not seek re-election at Jabil’s Annual Meeting of Stockholders in January 2026.
StenTech Strengthens Precision Parts Platform with AME Acquisition
10/17/2025 | StenTechStenTech, North America’s leading provider of SMT printing solutions and precision manufacturing, has announced the acquisition of Advanced Metal Etching, Inc. (AME), a recognized specialist in chemically etched and laser cut precision parts.
MKS’ Atotech, ESI to Participate in TPCA Show & IMPACT Conference 2025
10/17/2025 | MKS’ AtotechMKS Inc., a global provider of enabling technologies that transform our world, announced that its strategic brands Atotech (process chemicals, equipment, software, and services) and ESI (laser systems) will showcase their latest range of leading manufacturing solutions for printed circuit board (PCB) and package substrate manufacturing at the upcoming 26th TPCA Show 2025 to be held at the Taipei Nangang Exhibition Center from 22-24 October 2025.