Ushering in Ultrafast Cluster Electronics
April 5, 2019 | Hokkaido UniversityEstimated reading time: 1 minute
A new computational method can help fast track the development of tiny, ultrafast electronic devices made from small clusters of molecules.
Hokkaido University researchers have developed a computational method that can predict how clusters of molecules behave and interact over time, providing critical insight for future electronics. Their findings, published in the journal Scientific Reports, could lead to the creation of a new field of science called cluster molecular electronics.
Single molecule electronics is a relatively new, rapidly progressing branch of nanotechnology using individual molecules as electronic components in devices. Now, Hiroto Tachikawa and colleagues at Hokkaido University in Japan have developed a computational approach that can predict how clusters of molecules behave over time, which could help launch a new field of study for cluster molecule electronics. Their approach combines two methods traditionally used for quantum chemical and molecular dynamic calculations.
They used their method to predict the changes in a computer-simulated cluster of benzene molecules over time. When light is applied to the T-shaped benzene clusters, they reorganize themselves into a single stack; an interaction known as pi-stacking. This modification from one shape to another changes the cluster’s electrical conductivity, making it act like an on-off switch. The team then simulated the addition of a molecule of water to the cluster and found that pi-stacking happened significantly faster. This pi-stacking is also reversible, which would allow switching back and forth between the on and off modes.
When light is applied to the T-shaped benzene cluster in their computer simulation, they reorganized themselves into a single stack, changing its electrical conductivity. The addition of a molecule of water made the stacking occur significantly faster. (Tachikawa H., et al. Scientific Reports, February 20, 2019)
In contrast, previous studies had shown that the addition of a molecule of water to a single molecule electronic device impedes its performance.
“Our findings could usher in a new field of study that investigates the electronic performance of different numbers, types and combinations of molecular clusters, potentially leading to the development of cluster molecule electronic devices,” Tachikawa commented.
Suggested Items
Delta Electronics, Cal-Comp Strengthen Partnership to Drive Innovation in Industrial Automation
12/25/2024 | Delta ElectronicsDelta Electronics (Thailand) Public Company Limited, a global leader in power management and IoT-based smart green solutions, and Cal-Comp Electronics (Thailand) Public Company Limited (SET Ticker: CCET), a leading industry 4.0+ electronics manufacturing services (EMS) provider, have signed a Memorandum of Understanding (MOU) to deepen their collaboration in industrial automation.
Market-Comms, VNU Asia Pacific Unite to Drive THECA 2025 as a PCB Industry Game-Changer
12/23/2024 | EINPresswire.comThailand Electronics Circuit Asia (THECA) 2025 has officially announced its event partnership with Market-Comms Co., Ltd. (MCOMMS), No.1 local public relations firm, and VNU Asia Pacific, the designated show manager for the event.
SMT Mounter Market Size Projected to Reach $5.06 Billion by 2030
12/23/2024 | openPRAccording to the new market research report "Global SMT (Surface-mount Technology) Mounter Market Report 2024-2030", published by QYResearch, the global SMT (Surface-mount Technology) Mounter market size is projected to reach USD 5.06 billion by 2030, at a CAGR of 4.7% during the forecast period.
BIG, Delta Pioneer the First Low-Carbon Nitrogen in Thailand's Electronics Industry
12/23/2024 | Delta ElectronicsBIG, a climate technology company, and Delta Electronics (Thailand) Public Company Limited, a global leader in power management and IoT-based smart green solutions today announced a strategic partnership with BIG to advance the decarbonization of Thailand's electronics industry.
Flexible Printed Circuit Boards Market Expected to Reach $51.05 Billion by 2031 at a CAGR of 11.2%
12/20/2024 | EINPresswire.comA new report by Coherent Market Insights forecasts the global flexible printed circuit boards (FPCB) market to reach $51.05 billion by 2031, reflecting a strong compound annual growth rate (CAGR) of 11.2% from 2024.