-
- News
- Books
Featured Books
- pcb007 Magazine
Latest Issues
Current IssueInner Layer Precision & Yields
In this issue, we examine the critical nature of building precisions into your inner layers and assessing their pass/fail status as early as possible. Whether it’s using automation to cut down on handling issues, identifying defects earlier, or replacing an old line...
Engineering Economics
The real cost to manufacture a PCB encompasses everything that goes into making the product: the materials and other value-added supplies, machine and personnel costs, and most importantly, your quality. A hard look at real costs seems wholly appropriate.
Alternate Metallization Processes
Traditional electroless copper and electroless copper immersion gold have been primary PCB plating methods for decades. But alternative plating metals and processes have been introduced over the past few years as miniaturization and advanced packaging continue to develop.
- Articles
- Columns
Search Console
- Links
- Media kit
||| MENU - pcb007 Magazine
Creating Smart Surfaces with Electronic Functionality
May 6, 2019 | Pete Starkey, I-Connect007Estimated reading time: 2 minutes
Of all of the technical user presentations I attended at the AltiumLive design summit in Munich, the one I found most fascinating introduced an innovative technology that encouraged a bit of lateral thinking and appealed to my creative side. “IMSE: Creating Smart Surfaces with Electronic Functionality” was the title of the presentation by Sini Rytky, VP of product management, and Tuomas Heikkilä, senior hardware specialist, both from TactoTek in Finland.
Rytky explained that IMSE stood for injection-moulded structural electronics—a technique for integrating flexible printed circuitry and electronic components into three-dimensional moulded structures with touch-sensitive functional surfaces, using standard high-speed manufacturing methods and equipment.
The IMSE manufacturing process was logical and straightforward in concept. Starting with a flat thermoplastic film—typically a polyurethane or an in-mould labelling film—standard printed-electronics techniques were used to apply conductive features such as circuitry, touch controls, and antennas as well as decorative features and user-interface graphics. Surface-mounted components and LEDs were added by standard pick-and-place techniques while the substrate was still flat—presumably using conductive adhesive, although this was not disclosed. Then, the assembly was thermoformed into a three-dimensional shape and injection-moulded to form a thin, lightweight, functional unit with a smart, touch-sensitive surface and all of the electronics fully encapsulated and embedded. Of the numerous potential application areas, the most obvious was the integration of touch controls into automotive interior trim.
Designs could incorporate one or two films with electronics on one or both. Rytky showed an example of the stackup for a two-film structure. The top surface layer was an in-mould labelling film—although it could have been a natural material like leather or wood—printed with decorative inks. Next, came the first electronic layer, which was printed with conductive and dielectric inks and assembled with SMT components. At the centre of the stack was a layer of thermoplastic resin, polycarbonate, or polyurethane; then, the second electronic layer; and finally, an in-mould labelling film. Rytky stressed that the essence of IMSE design was to understand how these different materials and components would behave once they were put together, stretched to a three-dimensional form, and ultimately injection-moulded into a single unit.
Because IMSE enabled electronic functionality to be integrated into three-dimensional surfaces and in space-limited locations, there was enormous scope for innovative design, and decorative surfaces could be made functional without changing their mechanical structure. Further, conventional electronic assemblies could be substantially reduced in thickness, weight, and complexity.
An example demonstrated by Rytky and passed around the audience was a typical automotive overhead control panel. In its conventional form, it was a bulky structure, 45-mm thick, and weighing up to 1.4 kg with 64 individual mechanical parts, and its assembly required 30 separate operations. In terms of durability and reliability, the structure was fully encapsulated and protected from debris and moisture, and fully functional over a -40°C to +80°C temperature range. In another automotive example, touch-sensitive illuminated seat controls had been integrated within a real-wood door trim and the overall thickness was only 3 mm.
To read the full article, which appeared in the April 2019 issue of Flex007 Magazine, click here.
Suggested Items
TRI to Unveil New High-Throughput AOI and AXI at productronica 2023
09/15/2023 | TRITest Research, Inc. (TRI), the leading test and inspection systems provider for the electronics manufacturing industry, will join productronica 2023, which will be held at Messe München Center from November 14 – 17, 2023.
UK Space Agency Launches Consultation on Variable Liability Limits for Orbital Operations
09/15/2023 | UK Space AgencyThe proposals from the UK Space Agency follow a review into the UK’s approach to setting the amount of an operator’s liability in licences for orbital operations, a key commitment of the government’s National Space Strategy.
MediaTek Successfully Develops First Chip Using TSMC's 3nm Process, Set for Volume Production in 2024
09/14/2023 | MediaTekMediaTek and TSMC announced that MediaTek has successfully developed its first chip using TSMC's leading-edge 3nm technology, taping out MediaTek’s flagship Dimensity system-on-chip (SoC) with volume production expected next year.
MKS’ Atotech to Participate in IPCA Expo 2023
09/14/2023 | MKS’ AtotechMKS’ Atotech, a leading surface finishing brand of MKS Instruments, will participate in the upcoming IPCA Expo at Bangalore International Exhibition Centre (BIEC) and showcase its latest PCB manufacturing solutions from September 13 – 15.
Comtech Unveils New BRIDGE Solutions to Increase Access to Global Hybrid Connectivity
09/12/2023 | Business WireComtech launched its new blended, resilient, integrated, digital, global, end-to-end (BRIDGE) connectivity solutions. Comtech’s BRIDGE solutions provide portable, adaptable, full-service communications networks that can be established in a matter of hours and help “bridge the gap” for traditional satellite and terrestrial infrastructures.